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INTRODUCTION

* This report summarizes the research progress made under 
contract

number F49620-80-C-0032 entitled "Research and 
Development in Speckle

Imaging". Analytic Information Processing, Inc. pursued this effort

for the Air Force Office of Scientific Research (AFSC), United States

0 Air Force. The AFOSR programs manager is Dr. H. Radoski and the

principal investigator is Dr. J. W. Sherman.

Aaoess Ion For

NTTIS C' A&I

J t I f. C , nt i l _

Distriuton/
gopy AvaiU~t C~s

Avail /o
Dist SPe c al

AIR FORPL OFFICE OF SCIENTIFIC 
RESrARC (A SC)

NOTICE OF TR.1, ! ITTAL TODTICThis techn1icl Neport h s been reviewed and iS

Tippred for piili, r le'se IAW AFR 190-12.

Distribution is nlimited. I

MATTHEW J. KE4l
Chief, Technical 

Information Division

-1-d



RESEARCH OBJECTIVES

The objectives of the effort were to:

1. Develop a better understanding of the random processes which

degrade the coherence of light propagating through the

atmosphere.

2. Develop a first cut capability to process atmospherically

degraded images to obtain diffraction limited resolution.

To accomplish these research objects, the statment of work for this

effort delineated six tasks.

1. Develop mathematical models for the random speckle image

produced by atmospheric turbulence and by recording effects.

2. Develop equations for the second order statistics of a set of

speckle images.

3. Evaluate reconstruction performance in terms of algorithm

complexity and reconstruction accuracy.

4. Develop computational techniques from the reconstruction

equations with constraints describing the object's

characteristics.

5. Publish the results of analyses in relevant scientific

journals and at technical conferences.

6. Coordinate the speckle imaging techniques developed with

those of other researchers.
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Although the feasibility of Speckle Imaging had been shown previously,

the models and algorithms used were the simplest possible. The

development of improved models and associated algorithms was necessary

as a basis for improved Speckle Imaging and for analysis of the

accuracy of the reconstructed images. These improved models were

developed by analytic and experimental means. These tasks emphasized
the development of models which allow for the natural variation of the

degradation and the development of speckle imaging algorithms which

estimate not only the underlying image but also the model parameters

or degradation conditions.
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STATUS OF RESEARCH TASKS

The status of the research tasks will be discussed in terms of two

areas:

1. Non-isoplanatic Modeling

2. Recursive Algorithms

We have chosen to concentrate our research in these two areas because

they appear to have the greatest potential for improving the range of

applications for Speckle Imaging. The treatment of the

non-isoplanatic case will allow Speckle Imaging to be used over wider

fields-of-view in order to image extended objects. The development of

recursive algorithms will allow the use of generally available

mini-computers to process Speckle Images because they reduce the large

I/O requirements of non-recursive algorithms.

Non-Isoplanatic Modeling

Our modeling efforts for Speckle Imaging under non-isoplanatic

conditions were designed to determine the nature of the degradation of

Speckle Images and the extent to which the underlying image can be

recovered. The two-point source wave-structure function and the

altitude dependence of the index-of-refraction structure constant were

used as the basis of the modeling. The first and second order

statistics of speckle images were derived. An analysis of the

information recoverable from these statistics has shown that

diffraction limited resolution can be obtained. Two important

assumptions, which are usually satisfied, were made:

1. The isoplanatic patch encompasses the average spread

function.
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2. The greatest contribution to the atmospheric distortion comes

from turbulence at low altitudes.

Under these conditions, the aberrations of the telescope do not affect

the second-order statistics. Also, the integral equation relating the

object and measured second-order statistics is well conditioned.

These results were presented at the SPIE annual symposium and

published in the SPIE Proceedings, Volume 243.

This modeling effort was continued. The parameters of the

mathematical model for the non-isoplanatic degradation are determined

from the index-of-refraction structure constant profile. A random

process model of the index-of-refraction structure constant profile

was used to derive the dependence on this profile of the function

which smooths the second-order statistics under non-isoplanatic

conditions. We found that for the purposes of this model the

atmospheric structure function was reasonably approximated by a

5/3-law model for all values of its argument. Simple useful models

were obtained for the smoothing function which describes the

non-isoplanatic conditions. These models were verified numerically.

We plan to submit these results to the Journal of the Optical Society

of America for publication.

The results of this modelling effort were used to develop a

restoration algorithm for non-isoplanatic Speckle Imaging. The

tradeoffs in computational complexity were examined. The Speckle

Imaging equations were formulated in a general framework based on

linear algebra to allow an examination of the many alternatives. We

plan to submit these results to the Journal of the Optical Society of

America and/or the IEEE Transaction on ASSP for publication.

Recursive Algorithms

The recursive algorithm development effort was pursued because it

-5-
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allows Speckle Imaging to be used for a wider range of applications.

Extended Kalman filter formulations were developed so that subject

image models can be introduced easily. For example, time evolutionary

models for solar features or restrictive models like limited spatial

extent can be used easily. The recursive nature of the algorithm will
allow the use of mini-computers for data reduction, because of the

removal of the requirement for storing the second-order statistics.

These second-order statistics require millions of words of

intermediate storage which must be accessed many times for
non-recursive algorithms, producing an I/O burden too great for most

mini-computer systems.

Recursive algorithms based on an extended Kalman filter approach have

been derived. A detailed analysis of the decomposition of the Speckle

Imaging equations into manageable subsets has been performed. The
decomposition has a 'natural" format that results in very reasonable

computation requirements.

The evaluation of a one-dimensional example was started. An

oversimplication in the models led to singularity problems. In

finding the problem, we also found simpler forms for the Kalman gain

equations. These simplified Kalman equations were compared to a

recursive form of the least square algorithm previously developed.

We plan to submit these results to the Journal of the Optical Society

of America and/or the IEEE transaction on Acoustics, Speech, and

Signal Processing.
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LIST OF PUBLICATIONS

PUBLISHED DURING 1980

J. W. Sherman, Speckle Imaging Under Non-Isoplanatic Conditions, SPIE

Proceedings, Volume 243.

IN PREPARATION (WITH PROBABLE TITLES AND JOURNALS)

D. 0. Anderton, C. K. Rushforth, and J. W. Sherman, Non-Isoplanatic

Model for the Statistics of Speckle Images, to be submitted to JOSA.

D. Sauquet and J. W. Sherman, Isoplanatic Recursive Speckle Imaging,

to be submitted to JOSA and/or IEEE Trans. on ASSP.

J. W. Sherman and H. Ur, Restoration Algorithms for Speckle Imaging

Under Non-Isoplanatic Conditions, to be submitted to JOSA.
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LIST OF PERSONNEL

NAME AND POSITION RESEARCH EFFORT

J. W. Sherman Development of Models, speckle imaging

Principal Investigator equations and restoration algorithm for

non-isoplanatic conditions; Recursive

formulation development.

D. Sauquet Recursive (Kalman Filter)

Engineer formulation development.

S. P. DeMarta Development of recursive speckle

Programmer imaging programs.

T. P. Liu Library research on turbulence

Engineer models.

H. Ur Non-isoplanatic restoration algorithm

Engineer development.

C. K. Rushforth Non-isoplanatic modeling.

Consultant

D. 0. Anderton Non-isoplanatic modeling.

Consultant
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Section 1 Introduction and Definition of the Problem

1-i Definition of the Problem

A solution to the problem of reconstructing telescopic images whose

resolution has been degraded by passage through the turbulent

atmosphere has already been proposed with the process called "Speckle

Imaging". Speckle Imaging is the reconstruction of diffraction

limited images from atmospherically degraded, multi-frame imagery.

The process of recording the images viewed through the telescope

introduces noise effects making the treatment of the turbulence

effects difficult. A model has been developed for both the turbulence

effects and the noise effects. With these two models and a data set

composed of images of the object, a speckle imaging algorithm provides

an estimate of the object. The algorithm previously reported [I] is

based on a least-squares method.

The goal of this effort was to develop a new algorithm in speckle

imaging in order to increase the range of applications. The new

algorithm should meet the three following requirements:

1) To be a real-time algorithm, treating each image when it arrives,

2) To allow the treatment of time evolutionary models for both the

object and the atmospheric statistical characteristics,

3) To allow the use of a mini-computer.

One of our main concerns for the use of a mini-computer will be the

reduction of data storage. The recursive nature of a real time

algorithm will aid in this reduction.

1-2 - Speckle Image Model

In the effort to demonstrate the feasability of the least-squares

algorithm, several simplifying assumptions on the speckle image model
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were used and the new algorithm will be developed under the same set

of assumptions.

- The imaging is assumed to be isoplanatic which means the

speckle image from a point source is constant over the field of

view. This allows for the use of Fourier techniques to convert

convolutions into algebraic equations,

- very simplified mathematical models for the statistics of the

point spread response are assumed,

- to avoid any analysis or question of degrading effects, the

imaging conditions are restricted to narrowband exposures of a

constant, bright object.

Models for the two principal sources of image distortion that occur

when using a ground-based telescope can be developed under the

previous assumptions. The first source is the turbulence of the

intervening atmosphere. The second source is the error or noise

associated with the physical measurement of the image and we shall

refer to it as the noise of measurement. This latter affects the

quality of the imaging less than the former, but it is its presence

which has previously made the correction for the turbulence difficult.

Model for the Turbulence Effects:

For simplicity, consider incoherent imaging over an isoplanatic patch.

The image can be expressed as a convolution of the object and a point

spread response function.

t) f( S t)

where i.F(x,t) is the formed image, o( ) is the object, and s(x,t) is

the point spread response. The point spread response depends on the

optical system and the phase delay and amplitude disturbance processes

caused by turbulence. Let S(z,t) be the optical transfer function
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corresponding to s(x,t), that is,

S ~ ~ ~ 7 t) t= d,9~))~ 2

where

a( ) is the aperture function of the telescope,

E(, )is the phase aberration function of the telescope

j (.,-) is the log-amplitude disturbance at the aperture caused by

turbulence,

S(,,') is the phase delay disturbance at the aperture caused by

turbulence,

and F , 7 indicates Fourier transform with respect to x.

The random properties of the functionS(Z.) rwill be characterized by

its mean _z) and covariance S(z,,22).

Assuming the usual Gaussian distribution for ) and 9 allows the mean

and covariance of S(z,t) to be written in terms of the wave structure

function D(°). Using the results of Fante [21, the mean and

covariance of S(z,t) are well approximated by

and
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For the mean S(z, the effects of the atmosphere and of the

telescope separate into a product form. --z) is dominated by the

exponential factor and decays to zero rapidly as the spatial frequency

increases in magnitude. For the covariance.5(2 Z ), the expression

(4) is quite complex.

However, the Fourier transforms of astronomical data were studied and

the analysis of their first and second order moments have shown that

the characteristics of the statistics of the point spread response are

reasonably simple in spite of the complex nature of (3) and (4).

Therefore, ad hoc approximations to (3) and (4) were developed; these

approximations have the same general characteristics as the data.

The mean Stz was approximated by a gaussian function,

S' C -X(5)

whose width was proportional to the correlation distance, r,, of the

complex disturbance in the aperture plane resulting from the

turbulence. .is small compared to the diameter of the aperture D.

The approximation of the covariance was proportional to the product of

two factors.

- one that models the narrowband dimensions of the covariance and

the effects of decorrelation across the aperture:

This term exponentially decreases with increasing distance from

the plane z,-z 0.

- another one that models the broadband dimension of the

covariance:

-4Z
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The te models the effect of removing the mean in
the covariance. The remainder of this second factor approximates

the ideal diffraction limited optical transfer function.

Let the covariance of the optical transfer function be denoted by

Because of the symmetry properties of the Fourier transforms of real

functions, it is also true that:

(Z FO(7)

Model for the Noise Effects

Although the formed images if( __t) of (1) are instantaneous

functions of time, there is some finite exposure (i.e., averaging)

time involved in their measurement. We assume that these times ATare

short enough to "freeze" the turbulence effects and this will allow us

to apply (1) for these time-average images:

and to obtain: CP(

-00

Telescopic images are generally recorded using either photographic

film or electronic cameras, often at limited photon flux levels. For

both systems and under various hypotheses, the effect of these noises

of measurement can be modeled using combinations of Poisson, additive,

and multiplicative noise terms.

-5-



Each type of noise models physical random processes that occur in the

measurement process. In the recording of speckle images a particular

order is useful; additive noise modeling scatted and background light

occurs first, then Poisson noise modeling photon reception, and

finally multiplicative noise modeling sensor non-linearities.

Then, if 1,4j)denotes the measured image, the following diagram and

equations will represent the measurement noise process.

Additive 

Noise (xT) 4X .)fl&(, ) (10)

Poisson

Process

Multiplicative ++
Noise

The noise process has a zero mean such that

Let

) be an additive noise with zero mean and variance of Oa)

Sp( T.) be a Poisson process with means tnpI_4,3and variance

O (X) - , and

flrXj,) be a multiplicative noise with unity mean and variance .

The mean and variance of the Poisson process are given by

/ r ~T =_ -a ) = T (-12) J --
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where

PO is the total photon flux detected, and

1. is the integral or total expected image intensity.

The three measurement noises are all assumed to be statistically

independent among themselves and independent of '(z T). They are

assumed to be spatially and temporally uncorrelated.

1-3 - The Restoration Algorithm

Sample Image Statistics

For the speckle imaging algorithm, the sample first and second order

statistics of a set of images with measurement noise will be used and

their relationships to the mean and covariance of the point spread
response have to be established.

First Order Sample Statistics: The set of images is composed of N

images taken at times, j=Ij.'; then the average of the N images gives

the first order sample statistics:

NN2 ). , (13)

Because of the zero mean of the noise of measurement, the sample mean

is unbiased
A

Ef'() (14)

and when taking the expected value of (9), i(x) is given by:

Fourier transforming (15) changes this integral equation into an

-7-



algebraic one

1(z) (16)(z)(

where G(Z) is the transform of the object

A _1) is the mean of the Fourier transforms of the images

If 1(Z) is the sample mean of the Fourier transform of the N

images; then its expected value is given by
A

_T_§J(z)] 1(Z) E )5( .(17)

Unfortunately, these first order statistics contain very little high

spatial-frequency information because 5(Z) has a very low pass

nature. Because of this low-pass nature, the inversion of (17) is

ill-conditioned: small variations in _TZ) would result in large

variations in the estimation of O(Z) and thus, the effect of the

measurement noise would be increased.

However, the broad-band nature of the covariance SCb) will allow

us to use the second order statistics to restore the images in the

high frequency domain.

Second Order Sample Statistics

The following notation will be used for the second order statistics:

- The inverse Fourier transform of S (z,,z ), the covariance of

the transfer function S(z), will give 1 (x,xZ), the covariance

of the point spread response s(x).

- The covariance of a set of images in the spatial domain

(respectively in the frequency domain) is given by Ri(x,,x,),

(respectively S"z ,z ) ) and the sample covariance by R.(x ,x

(respectively S5, (z z_)).



Taking the covariance of (9) gives

X 4,14 _ ))_73 (18)

-CO

In this integral equation, the object o(2) appears as the cartesian

product with itself. An unambiguous solution of this non-linear

integral equation will require a non-linear solution method. The

method will depend on the characteristics of the sample image

covariance used in the inversion of (18). Let z)be the sample

covariance function of N images at times T- j = 1, ... ,N, then

A N __

Z - (19 )

We are now interested in the relationship between the expected value

of the sample covariance, EJ ' ( , )2 and the covariance
k, . AZj , ). -

If [/,? I., Ff ('AZ,jx)J- X R, (A,) because the measurement noises

are spatially uncorrelated.

If g;,I-,', #' Y,(A.) can be expanded in terms of the multiplicative

noise and the image corrupted by additive and Poisson noise.

A Al A a

R, VI .) ,- 2_ _

The mean of the first term adds to the variance the contribution of

the additive and Poisson noise. It is equal to

-9-



T* (21)

The mean of the second term is zero because Pm(x,,) has unity mean

and is statistically independent of 4_X', ,)) . The mean of the
last term is equal to the product of the 2nd order non-central moment

of and the variance of rlm1'j7),

Therefore we obtain:

~ (xy ?-. ~(23)

and we can sum up the cases and % in a unique formula

J- ,. _,,x . J ) ,_, , _, /: -) "': . (24)

-2 . >(':_frn )* +< (i (3(-,.) +k'&:'.

The difference between r/A" "7z-y and (AQ142Qcan be considered as a

bias. Once this bias has been subtracted, the sample covariance (18)

can be solved for the object using the two broadband dimensions of

For the assumed case of isoplanatic or spatially invariant imaging,

the convolution nature of (18) allows us to use the Fourier transform

to rewrite (18) as:

And in the frequency domain, (24) becomes:

-10-



Ef{~~}= ,~ ~ ~ i4(26)
+ 6T r,-!)T{z-_-, r -,&

Or'If L"''IIL~ -tz LZ ( z -6~

If the noise model is accurate and the parameters are known, the

sample covariance can be corrected for the effects of noise. If not,

within the constraints of this or another noise model, the parameters

can be estimated and used to correct the sample covariance. Let us

call 5 %C_ 2 ) ) the corrected sample covariance.

The algorithm previously developed, [1] is an iterative process that

uses both the first and second order statistics through equations (17)

and (25). If (9'(Z) denotes the ,-th estimate, then for a

particular value of z1, equations corresponding (17) and (25) are

written as:

0- ( (Z 0)~ _-  (27)

9 z, _ ) , \]-,S iz_ 79
A4 (28)

7 Z - Z2_ -4

where only values of znear zyare used, /z-z/.r Because the

sample statistics are used, these equations have errors. The

equations for /z "z/>r are dominated by errors and are discarded.

The corresponding components of %/Z,) Z.) are not computed, greatly

reducing the order of the computation (proportional to M rather than

M Yfor M x M images). These equations at a particular value of z,, are
141

solved for 0 (z1) in a least squares fashion to give

-11-
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AA -

9( J z,_ -7

where o is a weighting parameter to control the relative importance of

the sample mean and sample covariance (oK=O for fz,(>r0 ). These

equations are solved for each zI starting at the origin proceeding

toward the diffraction limit in a spiraling manner.

The parameters of the noise model are estimated (if desired) after

(29) has been applied to all z,. The estimate is obtained by a least

squares solution of

(30)

cc ~-) 0 (~B(1 z),61( 1 z

for the coeffici:nts c., c1, c2 , and c3where (_;-_r)is a

precalculated approximation to the integral of (28). The coefficients
c/1 c', and c3 are used as -( ), cand (1+ ) ,. The, ~ ~ _ ar used (asI, P . h

square root of c~is used to scale G (z.) before the next iteration.

This iteration using (29) and (30) usually converges after two or

three passes. Then the inverse FFT algorithm is used to compute a

reconstructed object image. Finally, by varying assumptions

concerning the noise processes, we obtain several reconstructions and

use them to remove the noise artifacts, which vary between

reconstructions.

Finally, our signal-processing method for restoring atmospherically

degraded images can be briefly described as follows. We obtain first

and second order statistics of the degraded images from 40 to 300

short-exposure (about 10 ms) images. These measured statistics are

-12-



then related to the underlying object and atmospheric characteristics

by a series of integral equations, which are solved by a combination

of "optimal" signal-processing techniques. With Fourier methods, we

transform the integral equations into a set of non-linear algebraic

equations. An estimate of the undegraded object is then obtained by

solving linearized subsets of these equations using least squares

techniques. The restoration technique converges quickly, and the

required computational effort is roughly proportional to the number of

resolution cells in the image.

Figure 1 summarizes the restoration algorithm.

-13-



I ,
SPECKLE IMAGES

DIGITIZATION AND DISCRETE FOURIER TRANSFORM

SAMPLEc MEA SAMPLE COVAR IACEA
I(Z) Si -('-

C11C9C -1REMOVE NOISE BIAS

ESTIMATE NOISE AND C ESTIMATE OBJECT
SCALING PARAMETERS 0 TRANSFORY

INVERSE DISCRETE

FOURIER TRANSFOR x

NOISE MODEL ASSURETIONSIS

RECONSTRUCTED IMAGE[

Figure I - Algorithm for reconstructing the object image from sample

statistics. Once the iterative process converges, a reconstructed

object image is computed with the inverse Fourier transform. The

final reconstructed image is obtained after several preliminary

reconstructions enable us to remove the noise artifacts.
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Section 2 - Two Approaches for a New Algorithm

2-1 - A Recursive Least-Squares Algorithm

Our first concept for a recursive algorithm was to simply transform

the previously studied least-squares algorithm into a recursive

least-squares algorithm.

Let: TJZJbe the recorded Nth image in the frequency domain,

&.(.)be the .th estimate of the object obtained with N images,

fvzand S,(Z. 2 ) be the first and second order sample

statistics computed with the N first images.

A test of convergence is conducted on the sequence land for
AAte last iteration, I max, the estimate 6 £, (_) is obtained (i max

may depend on Z ). When the next image (N+I) is available, the

estimate of the object is initialized for each z'with,

S,. , z ). Then using recursive formulas for the sample

statistics, the equation (29) of Section 1 can be rewritten as

follows:

[, ). /) (31)/Z- , -<'

The first drawback of this real-time algorithm is that it assumes the

object and the statistical characteristics of the noise processes are

stationary.

Besides, let us examine recursive formulas for the sample statistics

of the recorded images. The formulas are given by:
A A

A11, il I+ 1 I (Z.) (32)
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N 4 (34)-,z) = <:,, ,1- . ',Z-<z;

This algorithm would require the storage, at each step N, of the

quantities:

for each z,

"'_z) for each /z<
IVz ) for each z,,zsuch that /z -z

For MxM images, the storage requirements would be about 10 to 20 times

M 2and would make the use of a small computer difficult.

If the sample statistics did not have to be stored, a small computer

could be used more easily. This would require storing only the

current estimate of the object. All the desired information in the

sample statistics is ideally contained in the current estimate of the

object. The sample statistics recursions (32) and (33) would be

replaced in this recursive algorithm by

= -- S (ZB) (z.& ,Z-.., (z) (35)

This allows the recursion (31) to be written as -

Ox (36)

/Z,-z, c.
-' 7

A

75 C-).7L, ) _ 6r(z. - (i-2 'i

/ -1 Al"''
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This algorithm is similar in form to a Kalman Filter where Kalman

weighting functions have been greatly simplified. A Kalman Filter

approach will be taken to obtain a more general result with a better

analytic basis for its form.

2-2 - A New Approach: A Kalman Filter Algorithm

The problem of the real-time estimation of the object O(_Z j, in the

case of evolution of the object and non-stationarity of the

atmospheric characteristics, can be formulated using a Kalman Filter

approach.

As for the existing least-squares algorithm, the assumption of

isoplanatic imagery will enable us to transform integral equations

into algebraic equations and therefore the model in the frequency

domain will be preferred to the model in the spatial domain.

The remainder of this paper treats the theoretical formulation of the

Kalman Filter and its particularities due to our special case.

However, before studying the Kalman algorithm, a slightly modified

notation, taking into account the evolution of the object and of the

statistical characteristics of the turbulence, needs to be introduced:

Let the Nth image measured at time TN be represented in the

spatial frequency domain by

where

_T (Z,)is the Fourier transform of the measured image,

S is the optical transfer function,

( z,)is the Fourier transform of the object, and

is the Fourier transform of the measurement noise.

-17-
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This statement is illustrated by the following block-diagram.

Spatial Domain Frequency Domain

0(,T) (Z)
N N--I

object object

atmosphere atmosphere
& &

telescope telescope

i(x,T ) s e (z)
N iN N

additive noi se

Poisson noise measurement noise

multiplicative noise

id_(x,T) F IN(i SiNeN(z-i + iN

recorded image

Fthe arrow FF symbolizes the two-dimensional Fourier transform

-18-
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Section 3 - Theoretical Formulation of the Kalman Filter

3-1 - Definition of the State Vector and of the Observations Vectors

Both the real part and imaginary part of the object O(Zjwill compose

the real state vector X , which we want to estimate. The state

vector can depend on time (we want an algorithm that permits the

evolution of the object) and XV will represent the state at time N.

At each time N, we receive a new image. Let us callZTj.zthe Nth

image, in the frequency domain, and at the frequency Z. This image

is received at time N. With this image we can define a vector of

observations YV. Yk/ is composed of measurements /L4. swhen

fz,,-6r, ; or to be more precise, the real vector yiis composed of

the real and imaginary parts of 7

3-2 - Equations of the Kalman Filter

The purpose of the Kalman Filter is to build a sequence of estimates

of the states ( , N=1,...) from an initial estimate of the state

I"Each estimate is a realization of a random process and is then

characterized by its statistical properties, in particular the mean

and covariance matrix.

Let us call/T & ,-the sequence of estimates, resulting from our Kalman

Filter. We shall require for our estimate 2^, to be an unbiased

estimate with a minimum covariance matrix CNII.

In order to build _2N4j,, we use the information given by the N first
images. X,/, is then called the a-posteriori estimate. The

information given by the Nth image is stored in the vector Y.,/. Using

the relation

-7 (.)TN~I (38)
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we can express the observations Xv as a quadratic function of the
state T :

where is a deterministic quadratic function and /, is a noise

vector of zero mean and covariance matrix " This is the

observation equation of the Kalman Filter.

The observations do not depend linearly on the state, but follow the

quadratic equation (39). In order to obtain the state covariance

CAI... we have to use a Taylor series of )Y(,) and then introduce the

Jacobian matrix//,. To obtain Clas a function of only CAI;_1 ,

A)and'R we have to restrict the Taylor series to the first order

items.

As shown in the following Section 3-3, the noise of observations is

not Gaussian. However, we will use only the first and second-order

moments.

These "non-linear observations" and the use of the Jacobian matrix to

linearize them about the current estimate results in an algorithm

known as the extended Kalman Filter. This solution of will be optimum

in the sense of minimum covariance, but not in the sense of maximum

likelihood.

Estimatior of the state given the first image,l/o

If the a-priori state estimate, 71X , is unbiased, and if we look for

an unbiased estimate of 2'o as a linear combination of Yand_/. ,we

can prove that must follow the equation:

-240
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The gain KI, also called Kalman gain, will be chosen such that the

covariance matrix of , is minimum.

Let us call C,1 the covariance matrix of / Then, expanding (40)

about 4, gives

(41

This relation permits us to calculate C as a function ofC

I(, and • ,

- (42)

is a definite positive symmetric matrix associated with a definite

positive quadratic form that will be minimum for

T with 
yand we shall have:

4 ~,ZIC K( ~,x) (43)

Prediction of the state at the second image /i from 3/

The evolution of the state between the times N and N+I is given by an

equation of evolution of the following type:

(45)

$ where '4is a deterministic function that can house a very general

form, where U.Olis an input vector and where b/1 is a noise vector of

zero mean and covariance matrix

-21-
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To simplify the presentation, we suppose/1.linear:T/V

T1 -F r6 (46)

Using the estimate A which is the "best estimate" in the sense of

minimum covariance available for . , we can predict the unbiased

estimate 4T for -' by:

(47)

is called the a-priori estimate of _, its covariance matrix,

2// iscvrac arx

C./I I is given by

CZ/C-fQA (48)

Using the second image and repeating the operation we performed to

obtain -, from9/ we obtain a-posteriori estimate of X and

its covari ance C)/,.

Using alternate filtering and evolution equations, we can compute

(L,; N=I,...). The Kalman Filter equations can be summarized by

the following set of equations:

Filtering Equations

C -24/CAIA



Evolution Equations

-A1+ (50)

3-3 - Particularities of the Noise of Observations - Lj_ and Form of

the Equation of Observation

Another particularity of this Kalman Filter is the model of the noise

of observations . This noise results from a combination of noises
of different sources:

Noise due to the turbulence of the atmosphere which is modeled by

a random transfer function of the telescope, 5$Nat the frequency _Z,

Noise of measurement 1, (additive, multiplicative and Poisson

noise).

In order to understand the noise process, we can use a block-diagram

and some simplified notation.

Given a time N, we can omit the index N appearing in the notation and

we define x,.and /,'as follows:

X, O' L ' (51)

-< -- ) (52)
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Block Uiagram

x. object at the x. object at the
frequency z frequency z

Atmosphere Atmosphere

x xa *1

measurement noise measurement noise

at frequency z at frequency z

observations y.y.
13
I J

Re(y.y.) and Im(y.y.) form
1 3 1 J

the observations vector

-24-
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% is the image received by the telescope at the frequency ?/. The

real and imaginary parts of X are elements of the state vector.

Y! is the measured image at the frequency _Zz.

By definition of the transfer function S at the frequency z we have

= (53)

and by definition of the noise of measurement

/

- ~ (54)

To help understand the form of the observation equation and the

particularities of the noise /,,, it is interesting to calculate

/(56)

y, A '¢"; -,' , F : i4

+€

To go from this expression of yiy/to the equation of observations

V(;r.Wkwe use the relation) 7 (57)

where E(p)denotes the expected value of the random process p.

The real and imaginary parts of the terms E Y,4, will compose the
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elements of the deterministic vector Y(,). Also, the real and

imaginary parts of ( I' tE({ /J -)) will compose the elements of the

noise vector tJi:t.

Therefore, by construction JYQ(4) will be deterministic and the noise

vector Tvwill have a zero mean.

Calculation of form of the function,+ and matrix

The two random processes, noise of turbulence and noise of

measurements, are statistically independent. Also, the noise of

measurement has zero mean. This allows E( toiiito be simplified,

(</,0 /9)-9 (58)

The parameters of the complex function ' -( . are composed of the

second-order moments of the noises of turbulence and measurement:

noin hand E

Knowing that E-) j is a real number, the elements of /It("v will

have one of the following forms:

or

.7. : /f *,hI,,-_.1i/t/,v9 -/JI,,'.) - A'j,<;.jT.£,')E(/. (;1, ,'

Then, the derivatives of these expressions with respect to the real or

imaginary parts ofZ or. will give the elements of the Jacobian

matrix/I%. These elements will be one of the following types:

The second-order moments of the noise of turbulence are the parameters
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of the Jacobian matrix/,.

The Noise tj and its Covariance Matrix A'

The elements of P/, are given by the real and imaginary parts of

4 51 (59)

Some statistical properties of the noise t),, will be given for the

covariance matrix of KA, )A/' which is involved in the Kalman

equations.

The elements of 9A' will be of one of the three following forms:

Thegeera frmua or ovy ) ) is developed in Appendix1
and will permit us to calculate the matrix /N

The general formula for CoyJy;y# j i

Re- -E i r

-2 A

~~Y4/

.2 A ~~-'y AK )(y ,/ )
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The following table gives the orders of various moments in the terms

of oCj

For the noise and for the noise

of turbulence of measurement

in terms of the 1st line 4 no moment

in terms of 2nd and 3rd lines 2 2

in terms of the 4th and 5th lines 1 3

in terms of 6th line no moment 4

We can notice first that the sum of the orders of the moments of the

noise and turbulence and of the noise of measurement is always equal

to four, and second that third-order moments of the noise of

turbulence have disappeared because they were multiplied by the

first-order moment of the noise of measurement, that is by zero.

Conclusion

The calculation of the second-order moments of the noise of

observation fl,, will require the knowledge of the 1st, 2nd, 3rd and

4th order moments of the noises of turbulence and measurement. This

is due to the nonlinearity of the observation equations.

3-4 - Particularities of the Covariance Matrix of the State Vector

One particularity of the state vector comes from the fact that it

contains real and imaginary parts of complex numbers; and this

particularity will confer a special structure to its covariance

matrix.

Let us consider 5(,the state vector at the time N and an estimate of

it The covariance is given by

-28-
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(61

*(is equal to 4 if or to Q if _ kZ4,. * is composed of

the real and imaginary parts of (z) and we can also define the
complex vector L9hose elements areeg(z). An estimate of is given

by 4.The dimension of and Tis twice the dimension of 64 and .

We can also define two complex matrices and C as follows:

--- ., . T7/J E - - 62

If p and q are some elements of 4,, then L> will be composed of terms

of the form Cov(p,q) and will be composed of terms of the form

Cov(p,q*-).

Also, C. is composed of terms of the following form:

±/~ c ~jq)(63)

& . /(f,),1I- )) 7 Jq 4 .- I (,G/ J- 4 f. , 4L

GC'- ( . _u <cp) - -) .]

We want to express Q as a function of and 'ri. Then, assume that

the elements of Aare ordered as follows:

_ ~(64)
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CV is equal to the block-matrix,

Using the sets of formulas (62) and (63) we can show that,

CAI' (66)

/ 9A~z!R~~ Nq' ~(67)

-m/ A
A' (68)

Because ')is a symmetric matrix and -TJv,/)is an antisymmetric

matrix, we can rewrite (68) and (65) as

I U (69)

and

d-j CA

Separating the terms concerning /and Cwe obtain

- i 4/) Re- (., '(-) (d

1) CA-
~-30-



Section 4 - Particular problems of the application of a Kalman Filter

to Speckle Imaging

4-1 - Decomposition of our Large-Scale System into Subsystems

When implementing a Kalman algorithm to treat speckle images, the

first problem we meet is a problem of dimension.

A typical dimension of a digitized image has been 256 by 256 elements

(pixels). We will use the discrete Fourier transforms of the measured

images as input data at a discrete set of two-dimensional frequencies

Il(zi,, zi ). Using the symmetry properties of the Fourier transform

and the aperture limits will reduce the set of frequencies that must

be treated. The result of estimating the object, in the frequency

domain, is also a discrete set of values of the Fourier transform of

the object. This set will have the same dimension as the one

concerning the image and will be treated by the same FFT algorithm to

restore the estimate of the object in the spatial domain. Then, the

state of our Kalman Filter, , will typically have about 51,50D

elements (256 x 256 x7/4).

This is a large-scale system that will require a specific algorithm of

decomposition. However, the decomposition of the whole system into

several subsystems of reasonable size will come naturally when

examining the structure of the observations. As a matter of fact, the

measurement yiy), does not bring any useful information whenever

19t-ZiJ>e. Thus, when we want to estimate a particular X.1, we shall

select a subsystem,J )from the full system composed of all the

X such that mi is one of the measurements used in the full

system.

Then the state vector of the subsystem is a vector restricted to

the real and imaginary parts of the _ such that /.i-z'r and the
observations vector is composed of all the measurements 1, that can
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be formed with the . and ;r belonging to the state vector of the

subsystem.

Since f, is very small compared to the aperture R, the dimension of the

state of the subsystem is very small compared to the dimension of the

state of the full system.

This decomposition is actually an approximation. Let us go back to

the full system and let us consider three frequencies ZZ., 2' and

such that: 1Z-1, -Z -z./<r, and IZ-.

Then, the two measurements fand ytjwill belong to the vector of
observations of the full system, but not

However, the measurement ;' will be helpful for the estimation of

;V and this estimation of ;' will affect the estimation of 'Ye', by the

intermediary of the observation $/j. Therefore, elz which is an

observation of the subsystem2, , will affect the estimation of
2" even if /z.-2 /is greater than ro . Thus, the subsystemsJ, and

are not independent even if

This shows that the Kalman filter propogates the information given by

a particular measurement 2yj. -A-along the whole set of frequencies

_Zi and that the estimation of Sr' will be affected by the whole set of

measurements

whatever Z.' Z., and may be. Obviously, the dependence of the

estimation of 7,, upon the measurements WV )A/12-.- will be
more or less important depending on the distances /Z -2,land
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The Effect of Propagation of the Information on the Covariance Matrix

of the State of the Kalman Filter

If we initialize X using the first image and the information this

image gives with the measurements (- such that /Z, -21 -r,, then

the covariance matrix of the state will be initialized by a matrix

with a band structure and the width of the band will depend on the

number of frequencies inside the circle of radius r.

As a result of the phenomena of propagation, if we run the Kalman

Filter, the width of the band of the covariance matrix will increase

with each new image and some covariance terms will appear between two

estimates , and A, such that /2;-Z)?-

Implication on the Choice of the Subsystems

The algorithm on the subsystems 7 must restore this propagation of

the information in order to use each observation as much as possible.

To achieve this goal, we must make an adequate choice for the

subsystems.

Assume that we make the following choice of subsystems. We partition

the set of frequencies zjinto "circles" of radius r, such that each

z.(respectively?; ) belongs to one and only one "circle" (respectively

subsystem). The treatment of one subsystem J., associated with a

subset of frequencies, will provide the estimates of all the %,'s such
that /,z-z /2r. Then the treatment of all the subsystems will
t I .

provide an estimate of the whole object.

Nevertheless, with this choice of subsystems, we would not restore the

phenomena of propagation of the information along the set of

frequencies because we would make two subsystems appear independent,

whereas they are not in the full system. Also, the use of

measurements would not be optimal: the estimation of ,belonging to
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and of belonging to such thatj, is different from

but Iz.-z,/r,, would not use the observation Y;,* . This

discarding of the measurements that correspond to crossproducts of

state elements in separate subsystems is undesirable. Because such a

choice is inappropiate, we must chose a sequence of subsystems that

retains these measurements. There are several closely related

viewpoints which allow the use of the needed measurements.

First, we can choose a sequence of K subsystems-fi1), f(2),... J(K)

such that two adjacent subsystemsfim) andyJm+1) have a common part
in their state vector. Then the part of the object, which is common

tozj(m) and j(m+l) and estimated by the Kalman filter on the subsystem

JP(m), will be used by the Kalman filter onJ'A(m+1). Thus, using the

a-posteriori estimate for J, we shall improve the a-priori estimate
*for /,

Second, we can expand the observations vector used with a given

subsystem ,to include all measurements that involve at least one
9 element of the state vector. Then, all of the data will be used.

Finally, we can view all of these subsystem constructions as

particular cases of treating the observations of the full system in

subgroups and restricting the elements of the state vector being

updated. The updates are then treated in a sequence which treats all

of the observations and all of the state vector. The subgroups of

either the observations or the state vector or both must overlap.

This overlapping characteristic of the algorithm will propagate the

information on the estimation of the state. Thus, the state estimates

will be interdependent and correlated. However, the corresponding

terms of the covariance will still be zero and the norm of the

covariance will be larger than computed by the full system.

Let us illustrate the first viewpoint by a one-dimensional example.

-34-
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Let us consider a set of Fourier transforms of one-dimensional images.

The set of frequencies has been discretized into M discrete

frequencies separated by intervals of constant length ;z=O, zl,...

zmir  We choose the subsystems so that the state of the subystem

A(+I) is obtained from the state of the subsystemS1flI) by dropping

the object at the frequency z1._, and inserting the object at the

frequency z,-(1 .

The treatment ofj'(1) will provide an estimate of

The treatment ofS(2) will provide an estimate of

The treatment of J(3) will provide an estimate of /

After the treatment of-(1), we keep the estimate of xobecause it has

been made using all the information o We also... q .
Y, V I Y Y/We also

use the estimates of x,, xz,... xt t as the a-priori estimates for the

Kalman Filter ofJ'(2). The estimate of x,, we obtained withf(1) did

not use the information given by , i.

Then, withZ(2) we shall again estimate x,, now using ,. The

result will contain information about +cy, given through the a-priori

estimation of x,, and information about V , 4g... gven

through the observations vector ofJ(2). We can repeat this operation

until the Kalman filter has been applied to the last subsystem. We

start again with the treatment of A 1) when we receive a new image.

Such an algorithm will use the important measurement information and

will propagate the information along the set of frequencies.

If the discretization of the Fourier transforms of the images is very

fine, corresponding to a large field of view, we shall have too many

points inside a circle of radius rand the state of any subsystem may

still be too large to be treated easily and quickly by a

mini-computer. In this case, we can either reduce the field of view

and treat subsections of available images, or formulate the Kalman

filter using a more restricted update of the state vector.
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4-2 - The Kalman Gain Matrix

Computing the Kalman gain matrix usually requires most of the

computational effort associated with the filtering equations. A

straight forward treatment of the Kalman gain equation for the full

system would require the inversion of an enormous matrix whose order

is the same as the observations vector. Fortunately, by using the

decompostion into subsystems, the order of the matrix that needs to be

inverted is greatly reduced. However, because of the high number of

images and subsystems, the computation effort required for inversion
would still be quite large.

The required computational effort can be reduced further if we forego

some of the generality of the Kalman formulation. We shall assume

that our system has no dynamics. By "no dynamics", we mean that the

equation of evolution *, = P( , Q,, )4-becomes !,, =4,. This

simplification restricts the class of objects being estimated to

constant images described by the general diffraction limited Fourier

transform. Although we do not allow any evolution for the object, we

allow the statistical characteristics of the noises of turbulence and

measurement to change. For example, changes in the seeing conditions

and measurement conditions are quite common.

How much the required computational effort can be reduced depends on

the degree to which the Kalman gain calculation can be simplified.

Two alternatives will be explored briefly. First, the Kalman gain
calculation will be approximated by a difference equation. Second,

further simplifying assumptions will be used to allow the Kalman gain

to be precomputed to various degrees.

Simplification of the Notation

As the system has no dynamics, the evolution equations of the Kalman

Filter become,
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for the state':

-2-, -9" (72)

for its covariance:

CA/If '/I (73)

Ihe a-priori variables at time N+I are equal to the a-posteriori

variables at time N. Therefore, we can get rid of the double index

notation and 4and would now represent the a-posteriori variables,

which result from the Kalman filter at time N. The word estimate, if

nothing else is precisely expressed, will refer to the a-posteriori

estimate.

With the new notation, the filtering equations become:
T -

Gain: //A Uk-i iL/ -/ (74)

~7

/)4/ 0/'V-A

State: (75) , (-,-k _',,_,)

Covariance: / (76)

Development of a Difference Equation for the Kalman Gain

Let us now consider the equations of the gain giving lk, and 1 z :

--V (77)

-37-/ (78)
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And, in order to develop a difference equation for the gain, let us

define the following matrices:

D~ (82)

H,1/and#//orespectivety /,,andk) are computed with the a-priori

estimates of the state times N+1 and N, j and wI. Then,

Z/4,H (respectively Z iN,, ) will depend on the variation of the state

estimate between times N-I and N, but it can also depend on the

variation of the noise moments between times N and N+1 as these

moments are the parameters of the Jacobian matrix (respectively the

covariance matrix ).

We must notice the minus sign in (81). The Kalman Filter causes a

decrease in the covariance matrix of the state estimate at each

iteration.

As we shall see later, the last one among these variation matrices,

Aa(?,)can be approximated in the first order by a linear function of

the matrices Z/,,, 8',, and A C(..

The equation (78) can now be rewritten as follows:(C -Z C,/H. --6 /,, ) , - '
(4,1 ~ 9(/ (83)

and assuming small variations, if we only keep the first order terms,

we obtain
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This is the first step to the difference equation we are looking for,
and we now need to develop the expression ofA(t2 ) as a function of

,,L andiy. Expanding 4t, and keeping only the first order

terms, we obtain:

p4 17,1V *7

If we denote by A/Y, the following matrix:

, - - , - (86)

we obtain

If we use the following approximation:

we obtain

/7 (89)

The difference equation for the Kalman gain becomes

7 -

with

-7

This recursive formula will permit calculating ),, from S, , ,
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A I,, and
-/I-

Then assuming we knowe,, we will not have to calculate P, by a

matrix inversion in order to obtain A /. With the Kalman gain & ,,we
can easily get the state estimate 24 , its covariance C,,,,/, the

variation matrices, and finally "

Precomputed Kalman Gain Matrices

Finally, we will examine conditions under which the Kalman Gain matrix

and state covariance can be partially or fully precomputed. The
Kalman gain and state covariance depend on each other, but only the

Kalman gain is required for the state estimation recursion. First, we

will determine the conditions which reduce the Kalman filter to the
recursive least squares algorithm of Section 2. Then, we will

consider the effect of removing some of these simplifying conditions.

The recursive least squares algorithm (36) updates the state at only

one frequency and uses all the observations within r of that

frequency. Under these conditions, the Kalman filter has a two
element state vector and a larger observation vector. The Kalman gain

and state covariance equations can be rewritten in the form where the

matrix inversion lemma has not been applied,--
-( 92)

(93)

Assuming that the atmospheric and measurment statistics are stationary

gives constants for the covariance R and the moments used in

calculating observation function ()) and its Jacobian HA. Assuming,

that the Taylor series from which the Jacobian is obtained is expanded

about the correct result rather than the current estimate yields a

constant H. Under these conditions, the state covariance and Kalman
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gain equations can be solved to yield

U 4 JV /l/< frfj(94)

/ //, .A/(95)

The resulting recursion becomes

S_ K -(Y i- (96)

where the current estimate can be used to evaluate the Kalman gain

expression.

This result is directly analogous to the least squares recursion (36)

of Section 2, but further simplification is required to complete the

comparison. The difference of observations and their predictions are

the same for both recursions,

C

Each row of the Jacobian matrix is the partial derivative of one of

the observations with respect to the state and has one of three forms:

2. for Re[,; [,

3. for Im[y./]; assu.e to-be

If the observations are assumed to be independent with the same
variance, R is given by

T (98)

Now the Kalman gain matrix of (96) is quite close to the gain matrix
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of (36). The recursion derived from (97) and written in a form

similar to (36) is

whereM -

£: -(r.(eD?: _ ),,) -: z ) ,,f :7 ))" (~~

A O,- 1-) / )rj
E) Z IC o -i ZdaA§

I2i -Z)/--~ L) 5 ~ r,,
Note that (36) used a diagonal matrix inversely proportional to B for

the covariance of the state C~which provides the same normalization

for both the real and imaginary parts of the estimate and does not

cross couple them. 4Iso, we have not treated lower frequencies,

i1< .in (99).

Increasing the dimension of the state vector does not substantially

change the recursion (96). The Kalman gain can still be derived

a-priori and evaluated using the current estimate. If we assume that

the observation statistics vary only by a multiplicative constant, we

only have to compute a scalar weighting factor to replace the 1/N

factor in (96).

If we allow the observation statistics to vary more generally, the

Kalman gain cannot be derived a-priori. However, if we assume some
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restrictive description of how the statistics vary, we can approximate

the Kalman gain a-priori. In particular, assume that the observation

statistics are slowly varying. For example, the seeing conditions as

described by the mean optical transfer function S(z) or r,, could be

slowly varying. Then, S(z) could be estimated over intervals less

than the decorrelation time of the seeing conditions and used in the

recursion (95) that assumes stationarity.

Conclusion

We have developed a Kalman formulation for the Speckle Imaging

problem. The intent was to develop a formulation that would allow the

use of mini-computers for Speckle Imaging. This was accomplished by

using decompositions of the full system into manageable subsystems.

These subsystems result from natural decompositions based on the very

limited area of coherence in the aperture caused by atmospheric

turbulence. Thus, the limitation of nature which requires that

Speckle Imaging is needed aids in making the numeric solution

manageable.

Although this formulation was developed under very general conditions

for the image and disturbance models, we have examined simplifications

and approximations which reduce the computational requirements. These

simplified Kalman filters approach a recursive version of the least

squares algorithm previously developed.
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Appendix 1 - Calculation of the Terms used in the Formation of

the Covariance Matrix of the Noise of Observations T,1,

A - Calculation of the variance and covariance terms of the real and

imaginary parts of two complex random processes

If E(r) is the expected value of a real random process r, we naturally

define the expected value of a complex random process by:

E(p) = E( Re(p) ) + j E( Im(p)

Then, we can define the complex covariance of two complex random

processes p and q by:

Cov(p,q) = E( (p - E(p) ) ( (q - E(q)

Using to the definition of E(.), we can commute the operation E(-)

with any of the following ones: Re(-), Im(,), and conjugation.

Therefore, we can develop the two following calculations:

4y'

Combining L -tY/ )and Ccj/lA( we find the three following

formulas:

L

L
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We shall apply these formulas to p yjy, A and q and develop
below a general formula for:

Cov(p,q) = Cov( yjYy~ yy
and then

Cov(p,q*) = Cov( yjY y*)

To obtain Cov(p,q) from Cov(p,q), we shall interchange the two indices

I and .

B - "Complex Covariance" of the Two Random Complex Processes yi, and

-h

We want to calculate

Co( Y, y  A E (y.* - E(yi ) E(y y'

with

Ym, + XI, + 'rr for m =i, j, k, orI.

Expanding pq = yy yy gives

+ 7-* x,
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To calculate E(pq), we take the sum of the expected value of each term

of the previous sum and we use the statistically independent of the

noise of turbulence and the noise of measurement. Also, because of

the zero-mean of the noise of measurement, the two underlined terms

have a zero mean. Then, the moments of p and q are:

+, X s, 5 l -ZM-I6

tXAE(~ E(r

I+

5 p) p

Combining these equations we obtain the general "complex covariance":

ii'
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ABSTRACT

This report deals with astronomical imaging through a turbu-

lent atmosphere when the commonly-made assumption of isoplanicity

is not valid. Integral equations are developed which relate the

object to the mean and autocorrelation function of a series of

short-exposure images. Useful approximations to certain functions

describing the effects of the atmosphere are developed and tested

using extensive numerical computations. These approximations lead

to a considerable simplification in the analysis of the effects of

nonisoplanatic imaging.
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1. Introduction

The purpose of this report is to describe the effects of

atmospheric turbulence on astronomical imaging when the object is

so large that the imaging is not isoplanatic. We begin by review-

ing the equations which describe optical imaging under the usual

conditions of Fraunhofer diffraction. We then develop some equa-

tions which relate the object to the first and second moments of

the image. Under certain conditions which are frequently encoun-

tered in practice, these equations are well conditioned and can be

solved to yield a reasonable estimate of the object. The imaging

equations have been developed by Sherman [I] and this report is an

extension of his analysis.

Unless further assumptions and approximations are made, the

imaging equations will involve complicated functions and time-

consuming numerical integration. A key contribution of the

research described in this report is the development of useful and

accurate approximations which allow us to obtain closed-form ana-

lytical results which describe the effects of nonisoplanatic imag-

ing. Results obtained using the approximate model are compared

with the corresponding results obtained using numerical integration

in order to assess the accuracy of the approximation. As we shall

demonstrate, the approximate model yields very accurate results

over a wide and useful range of parameter values. Furthermore,

bounds on the spatial frequencies for which the model is valid are

established, and these bounds are related to physical phenomena.

The imaging configuration with which we are concerned is
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shown in Fig. I. When the object is incoherent, the image inten-

sity distribution is given by the superposition integral

1(x) f f 0(y) s(x, y) d2y (I)

where

x is the angular position (in radians) in the image

plane,

y is the angular position (in radians) in the object

plane,

I(x) is the image intensity distribution,

0(y) is the object intensity distribution,

and

s(x,y) is the point-spread function of the atmosphere-

telescope system.

We assume that the conditions for Fraunhofer diffraction

apply [2]. Under these conditions, the complex amplitudes in the

object and aperture planes, and those in the aperture and image

planes, are related by Fourier transforms. The Green's function

for a point source at angular position y in the object plane is

given by

m2
U(x, y) = A f f F(z, y) exp [jkz - (y - x)] d2 z (2)

-m

where

z is the aperture position in meters,
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y Object plane

z Aperture plane

x Image plane

Fig. 1. The imaging configuration.
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A is a scale factor,

U(x,y) is the complex amplitude at angular position x in

the image plane resulting from a point source at y

in the object plane,

k is the wave number,

and

F(z, y) is the complex amplitude at z in the aperture plane

resulting from a point source at y in the object

plane.

We write F(z, y) in the form

F(z, y) = *(z, y) a(z) exp (je(z)} (3)

where

*(z, y) is the complex transmittance function of the atmo-

sphere,

a(z) is the pupil function of the aperture,

and

e(z) is the phase aberration function of the lens.

The transmittance function 4(z, y) can be expressed in the form

*(z, y) exp {X(z, y) + jo(z, y)) (4)

where

X(z, y) is the log amplitude disturbance

IIand
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*(z, y) is the phase disturbance due to the atmosphere.

In terms of the quantities defined above, the incoherent

point-spread function becomes [2]

s(x, y) - U(x, y) U*(x, y)

IAI 2 f f f f F(S + W, y) F*(O, y) (5)

exp {-jkw * (x - y)} d2 0 d 2.

F, and therefore s, are of course sample functions of random pro-

cesses which must be described in terms of their statistical prop-

erties. We turn in the next section to the development of expres-

sions which relate the first and second moments of the image inten-

sity distribution to the object intensity distribution and to the

statistical properties of the atmosphere.

2. First- and Second-Order Image Statistics

Sherman [1] has derived expressions for the mean and the

autocorrelation function of the image intensity distribution under

the assumption that X(-, ") and 4(-, .) are Gaussian random pro-

cesses. Similar results have been obtained by Fante [3] and

others. We briefly review these results in this section. Detailed

derivations are contained in Appendix A.

Taking expected values of both sides of (I) yields

E{I(x)} = J' 1 0(y) E{s(x, y)) d 2y. (6)
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The mean point-spread function has been shown to be [1, 3)

E{s(x, y)) = IA12 f f exp {-D(w, 0)1/2) exp {-jkw - (x - y))

f f a(0 + w) a(W) exp {je(a + w) - j6(0)) d2 w d 2.

(7)

where D(A, 6) is the two-point wave-structure function whose prop-

erties will be discussed in some detail in section 3.

The autocorrelation function of the image intensity distribu-

tion is given by

E{I(Xl)I(x 2 )} If I 0y 1Y)0(Y2 ) - E{s(xly I ) s(x 2 ,y 2 )} d 2 yld 22

(8)

where

E{s(x ,yl)s(x2,y2 )} IA14 ff ff ff HP(Ol ils2,2 )

- 0 - 00-

* M(BlW 1,Y1,V2,W2 ,Y2) exp {-jkw 1 * (xl - yl)- jkw2 (x2 -y2)

d 2 1 d2 d2 W d2 W (9)

The quantities P( ) and M( ) in (9) are defined by

P(BSjWlP 2 ,w2 ) = a($, + w,) a(B1 ) a ( 2 ) a( 2 - W2 )

* exp {je(o1 + W 1) - je(ol) + -e(B2) - jo(82 - W2)) (10)

and
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M(Bi' Wl' YI' $2' W 21 Y2 )

02 + W I + W 2 h(Yl Y2)]
exp 2 D(- I - 21h(y -2 D[8 1 - 2 + il.h(Y I Y2 ) ] >

Dx 1I - a2 + 2, h(yl - Y2 ) 1

(II)

The derivation of (9) to (11) neglects terms involving the

autocorrelation of X(', -) and the cross-correlation of X(-, *) and

*(', .). Fante 13] has argued that the impact of these terms is

small. For further details on these derivations, see Appendix A.

P(aI, wi, 02, W2) describes the effects of the finite aper-

ture and of lens aberrations on the second-order statistics of the

image, while M(O, wI, YI' 02' 2 y2 ) describes the effects of

atmospheric turbulence. Sherman [2] has argued that lens aberra-

tions can be neglected if turbulence is strongest near the ground

in the sense that

Ah 2h '+Ah 2

f C2(h) dh > f C(h) dh (12)0 h

where C2 (h) is the refractive index structure constant at height
n

h. We will assume condition (12) to be valid for all C2 profiles
n

of interest, and will therefore neglect the effects of aberrations

in the remainder of the report.
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We introduce the following changes of variables:

8I +8 82 -8B
- 1 2 Y=1 '2

yl + y2  y - y2
Y 2 "; = 2

I - W 2  W I + 2
L 2 ;Aw 2 (13)

Making these variable changes and neglecting lens aberrations in

(10) and (11) yield the equations

P'(B, AS, w, ftw) =a(s + AS + w + Aw) a(a + AS8) aC8 - ei)

o a( - as + w - Au) (14)

ar I

M'(u, Aw, As, by) =

exp PD(2& + 26w, 2hAy) + D(2AB, 2hAy)

D(2AB + Aw + w, 2hAy) - D(2A + Aw -, 2hAy

(15)

We now turn to a more detailed discussion of the two-point

wave-structure function D(-, .).
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3. The Two-Point Source Wave-Structure Function

Kon and Feizulin (41 have derived the following expression

for the two-point source wave-structure function:

D(A, 6) =0.033 (-.) r 7) ,2 k 2K_5/3 H h

• F 1  6, 1, M L bh 1 dh22
4L 2

;,l, / d(16)

where

is the distance between test points in the aperture

plane (meters),

6 is the distance between source points in the object

plane (meters),

k is the electromagnetic wave number,

Km is 5.91/l, where 10 is the inner-scale size of the

turbulence,

H is the height of the turbulent medium,

C 2(h) is the refractive index structure constant at height h,
n

L is the distance from object to aperture plane,

F is Kummer's function (a confluent hypergeometric

function).

Kummer's function is the confluent hypergeometrc function 151

z (a)(a + 1) z 2  (a)(a + l)a + 2) z 3

F (a, b, z) I + 1-+ (a(+ ) aC
1 1I b (b)(b + 1) 2! + (b)(b + )(b + 2) 3!

(17)
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This is a very messy function to work with, and we seek reasonable

approximations. In the literature (61, it has been common practice

to develop approximate expressions for iFl(a, b, z) for the

limiting cases Izi << 1 and IzI >> 1. We observe that for Izi <<

1, we may neglect the higher order terms:

F (a, b, z) I + IZI << (18)
1b

F (a, b, z) - 1 IzI << 1. (19)1 b

For JzI >> 1, we employ the asymptotic expression [5] valid for

Re[z] < 0:

r(b) -a
1F (a, b, z) - r(b - a) (-z) , Iz>> 1. (20)

Since, in the problem at hand, a < 0 and z < 0, IFI(a, b, z) is an

increasing function of z. For Izi sufficiently large we have

r(b) -

1F(a, b, z)- r(b) (-z)-a ' zI >> I. (21)
11 r(b - a) Ii I. 21

Fante [31 has used these limiting values of Kummer's function to

derive approximations to (16). His approximate expressions are

D(A, 6) k2 f C2 (h) d L h A + dh (22)

where
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3.25 1 -1/3 2

d(p) 3 o 1 < 0.1 1 (23)

2.92 105 iPI >> 0.17 1

Upon introducing the imaging problem ia section 1, we used

angular rather than linear units. To reflect this in the structure

function, we define the angular position vector 6' as

6 =.6 (24)L

We also assume that the objects are astronomical and hence that L

>> H. With this assumption and the change of variables shown

above, we find that

D(A, hS') - k2 f C2 (h) d(A + hW') dh. (25)
0 n

A key issue is the behavior of d(p) when p - 0.17 1 . Thus

far we have only developed approximations valid in the regions

iI << 0.17 1 and I0I >> 0.17 1 . It is not known at this point0 0

which of the two approximations models the behavior of d(p) in the

region of uncertainty. Indeed, it is not known if either approxi-

mation is valid in this intermediate region. To determine more

closely the behavior of D(A, hS'), lFI(a, b, z) was computed

numerically by summing terms in the hypergeometric series. The

result was compared to the quadratic approximation and to the 5/3-

- 12 -
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pT

power approximation ((19) and (21), respectively). The results of

the numerical analysis of Kummer's function are detailed in Appen-

dix B. In brief, it was found that the quadratic approximation

(19) begins to diverge rapidly beyond the breakpoint p = 0.17 lox

while the 5/3-power approximation closely follows Kummer's function

over the entire range tested. We conclude that the quadratic law

is valid only for very small arguments and that the 5/3-power

approximation is reasonable for all z. Henceforth, we will use the

5/3-power approximation of d(p) for all values of p.

With an analytical expression for the wave structure func-

tion, we are ready to consider the concept of the atmospheric cut-

off frequency w . We associate w with the spatial frequenciesc c

that can be recovered from the blurred image by long-term averag-

ing. The cutoff w is determined by the first-order statistics and
c

is generally defined [7] as the value of w that results in an expo-

nent of -1 in the function exp [-1/2 D(w, 0)). That is,

exp [--I D(wc, 0)] = exp [-1I. (26)

Solving for w algebraically, we obtainc

2 3/5

W = (27)
c 2.92 k2 o

where we have defined V to be the zero-order moment of the refrac-0

tive index structure constant
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H

P (h) dh. (28)
0on

In general, we define the nth-order moment P' to be
n

H

P f h C2(h) dh. (29)n n
0

These moments will be useful in later developments.

4. Imaging Equations

Substituting the expression for the structure function given

by (25) into (15), we obtain the following expression for the

mutual coherence function M'(W, Aw, AS, Ay):

MI('(C '&W, As, AY)

exp k 2 C 2(h) d(2AO+2hAy+26w) + d(2AO+2hAy) dh

d(2AO+2hAy+Aw-w) - d(2A$+2hAy+Aw+w) J

(30)

We make the following observations about the mutual coherence func-

tion:

2 2 21. For frequencies satisfying 1w) + JAW) < W2, the mutual

coherence is essentially independent of A$ and Ay, and

the entire aperture appears to be spatially coherent.

That is,
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M'(W, Au, A$, Ay) M c (w, Au).C

2. For spatial frequencies satisfying [AWl >> c

Iwi >> the mutual coherence is nearly zero:

M'(W, Aw, A0, Ay) - 0.

3. For spatial frequencies satisfying (Auf < c

lIt >> W , there is nonzero coherence in the region

12tO + Awl < w and lAyl < Ayc. In this case the

aperture is spatially coherent in regions the size

of WC) provided that the two source points are not

separated by a distance greater than Ayc"

The ability to recover the high spatial frequency information

from the second-order statistics of a set of speckle images depends

upon the nature of the mutual coherence function in case 3 (i.e.,

1 w >> ii, lAwl < w ). In the remainder of this report we will

concentrate on analyzing the coherence function under these condi-

tions.
£

We will now consider the effects of the turbulence on the

image. As discussed previously, we neglect lens aberrations. We

have shown that

S2

E{I x1 )I~x2)} = fi ff OCYl)O Y2 )E{s(xl,y1 )Slx2,Y2 )} d y2d y2 (8)

where
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t

E{s(x 1 , y1 )s(x 2 , y2)1 41AL4 ff ff f ff !f P'(W, Aw, , AS)
-O -00 -00-0

M'(w, Aw, La, Ay) d2  2 exp [-jkw 1

0 (xl - y)- jk 2 * (x2 - y 2 ))d 2 w1 d2 02'

(9)

P'(W, Aw, 8, A$) = a(- + AS + W - Aw) a(C + AO) aCS - 60)

*a(; A + -W)

(14)

and

M'(w, Aw, AS, Ay) =

/ d(w+Aw) + d~w-Aw)
exp 21 C 2 (h) (+ d(2AB+2hAy+26w) + d(2a+2hAy) C 30)

d(2A6+2hAy+Aw-) - d(2w)+2hAy+Aw+ )/

To simplify the notation we introduce the function

N(W, Aw, Ay) ff ff M'(W, Aw, t y), Ay) PI(w, , AS) d28 d2 As
.w -CO

(31)

The integration over AS effectively samples the function

P'(W, Aw, 8, AS) at AS - -Aw/2. Hence
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N(W, A , Ay) f f, , - d( -

If M'(w, Aw, AS, Ay) d2 AB. (32)

For convenience we define

F4(W-, Au) = j PI, ,A, 8, A = - d 2

ff a W;-f a g
=~ 2)a( + ±-2.-)()

2 )

and

72

0 (W, AW, Ay) - If '(w, Aw, AB, AY) d2 AS. (34)

From (8), (9), (14), and (31)-(34), we find that

E{I(x 1),(x2)1 =41At 
4 if If 0(yI) 0(Y2) ff fJ K( W, Au, AY)

• F4 (, Aw) exp[-jkw1 • (x1 - yl) - jku 2

(X 2 - y2)] d2W1 d2 W2 d2yl d2 y 2  (35)

This equation is valid for lul >> w , and IAut < W .

We may express 0(y) and M°(w, A, Aw) as inverse Fourier

-17-
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transforms:

0(y) (L 0woW) exp [-jkw' yj d2 , ' (36)

21r 2 2
Mow, A=, AY ) Mo(w, Aw, Aw') exp [-jkAw' * Ay] dAw'.

(37)

Substituting these expressions for 0(y) and M (w, Aw, Ay) into (35)
0

and simplifying yields

4 (2,0) cc Gf 00 - I A'0w
El (xl)l(x I 41A -C _2

2
. Mo(, Au, Aw') d A' F4 (w, Au)

exp [-jkw l . x I - jkw 2 * x2 1 d2I d 2 2 * (38)

Or, taking the Fourier transform of both sides of this equation,

) -

-2

M 0o(w, Aw, Aw') F4(w, Au) d Aw' (39)
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From (38) and (39) we conclude that the effect of nonisoplanatism

is to smooth the second-order statistics in the Au' plane. The

behavior of the smoothing function M (, Au, Aw') in the Aw' plane
0

determines the feasibility of solving (38) for the Fourier trans-

form of the object O(W). If

Au' < WC, (40)

then the integral equation (38) is well conditioned.

In the remainder of this report we shall consider the impact

of the mutual coherence function M'(w, Aw, AS, Ay) and the smooth-

ing function M (w, Au, Au') on the second-order statistics. Some0

key issues include:

1. Is it possible to find simple analytical expressions for

M'(w, Au, AS, Ay) and M (w, Aw, Au')?
O2

2. How does the random process C 2(h) affect
n

M'(C, Au, AS, Ay)? What are the pertinent properties

of C 2(h) that impact the imaging?
n

3. What generalizations can be made about the impact of the

smoothing function M (, Au, Au') on the imaging?
0

5. The Effects on Nonisoplanatism

In this section we will explore the effects of nonisoplana-

tism by deriving reasonable closed form approximations for

M 0(w, Aw, Ay) and M (, Au, Aw'). We shall temporarily assume that
0 o

S- 19 -



I;I >> w I t I < wc 12AO + Awi < w, w AY < Y (41)

these conditions will be explored in more detail later. We begin

by reviewing (30):

M'(, A, , Ay)

/ d (w + Aw) + d2 (w - Aw)

exp 2fC h d (2tiB + 2hAy + 2Aw) + d (2AO + 2htiy) dh>

d.krA+hy+ww - d 6 (2A5+2hAy+Aw+w))

(30)

where

d(p) = 2.92 Ip /  (23)

We have numbered the d(*) functions with subscripts to expedite the

discussion.

The conditions set forth in (41) insure that I1w is large

while JAa1, lAwl, and lAyl are small. For the moment we will

assume that IZI dominates the other terms in the arguments of

d ('),  d2 (- , d5(), and d6(-). This assumption is suspect since

the term Ay is always multiplied by h, which may take on large

values (2 - 10 4 ) in te range of integration [0, H]. However, we

shall tacitly accept the assumption that IhAyl < IWI at this stage.

Later on, we shall explore the limitations and consequences of this
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assumption.

With the assumption that i dominates the other terms in the

arguments of dl(-) , d2 (- , d5(-) , and d 6(.), we may expand each of

these functions in a power series by employing the binomial expan-

sion [51

(+ x)a + x + ct(a - 1) 2 +a( - )(a - 2) 3

2! x + 3! +

1xI < 1. (42)

For the problem at hand,

d(w + 6) = 2.92 Iw + 61
i 2.92 [(- + 6) • ( + 6)15/6

= 2.92 26

(43)I

As before, the dot denotes inner product. We have assumed for each

function that IWI > 161, so we may expand the term in parenthesis

in a binomial series with

x =  
+----- (44)

The resulting expression for d(W + 6) is

d(- + 6) = 2.92 + +A5/61 + -  * 1

(~ ~ ~ 3 wji - 6w653 L • * - • '6 18 co1 .

(45)
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where 0 is the angle between 6 and w. We can approximate d(w + 6)

by neglecting cubic and higher order terms:

~~ ~ 5 ,6  + 56 * w 6 * (5 5 2
d(+ 6) - 2.92 W - 3W + .W • + 6-_ Cos

(46)

Making the appropriate substitutions for 6, we arrive at the fol-

lowing approximate expressions for d (-), d2 (), d 5(), and

d 6():

d . -)516[ 5Aw. - w -w Auj5 5

1 + tAw) -2.92 (_W W I) + 3w w + W -- -8 Cos% 16

(47)

_ ~ -)516I 5Aw * Aw -*w52 Aw) -2.92 W cos - -e-
43w - w (0* (48)

dS(2AO + 2hAy + Aw - W) - 2.92 (W • / [1 5(2AB+2h y+Aw) "

(2AO + 2hAy +_w). (2O + 22hAy 6 1 A -5 5 2 )
1 (6- T-8 cos 3

(49)

(260 + 2hAy + AW + W) - 2.92 (W W / Ii + 5(2B+2hAy+Aw) •11 3 g .W

+ (2A + 2hAY t Aw) (2A8 + 2h~y + ,t ) (5 5 2
+ , - T 6 8 Cos e4 j

(50)
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where

8 angle between w and Aw

a = angle between w and -Aw
2

94 = angle between -w and (2Aa + 2hAy + Aw)

6 angle between +w and (2Aa + 2hAy + AW).

We note that

81 = 2

83 =7 0-4

and from the trigonometric identity cos (7 - 8) = -cos 0 , we

conclude that

2 2
Cos 0I = 

Cos 6 2

2 2
Cos 3  cos 4

We next observe that the mutual coherence function M' (w,

Aw, U8, Ay) will be maximized for fixed w and Aw when (2AB +

2hAy) w -Aw. This leads us to conclude that over the region where

M' (w, Aw, AO, Ay) is most significant, the term (2U + 2hAy + Aw)

will be nearly colinear with Aw. Hence:

cos 61 = cos e2 a cos 83 = cos 84
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In the remainder of this report we shall employ the approximation

above, and we will refer to 81 as simply e.

Unfortunately, we cannot expand d3 () and d 4(.) by the bino-

mial expansion since we cannot guarantee that any term in the argu-

ment will dominate for either function. However, we recognize

that d 3(-) and d4 () will only profoundly impact the shape of the

mutual coherence function M' when the magnitude of the argument is

close to w c. Hence, we will approximate d 3(P) and d4 (p) by a sim-

pler function that is a good fit in some sense when p w . The
c

choice for the approximating function is

d(p) - cIP I p + c (51)

where c I and co are constants selected to "optimize" the fit for

II W . The motivation for this quadratic approximating functionc

will become apparent shortly. Applying this approximation to

d 3(-) and d 4(.), we have

d 3(2A + 2hAy + 2Aw) = c (2AB + 2hAy + 2Aw) • (2AS + 2hiy + 2Aw)

+ co(52)

d 4(2 + 2hAy) - cl(2A0 + 2hAy) - (2AO + 2hAy) + c . (53)

To simplify the notation we introduce the following func-

tions:
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f I(, Aw, AS, Ay) = d (w + AW) + d2 (W - AW)

-d52AS + 2hAy + Aw - w) - d 6(2A + 2hAy + AW + w), (54)

f2 (A, AS, Ay) = d 3(2A + 2hAy + 26w) + d4(2AS + 2hAy). (55)

With this notation we can express (30) as

M'(w, Aw, AS, Ay) = exp -20 n(h)

S[fl(w, Aw, AS, Ay) + f2 (Aw, AS, Ay)] dhf

(56)

Combining (47)-(50) and (52)-(53) with (54) and (55), we obtain

(w, Aw, AS, Ay) ft -19.47(lW1 A - A +

13

(2hAy + Aw) * 60 + hA • Ay + h2Ay • Ay], (57)

f 2(AW, AS Ay) a c1 [8AO "AO + (16hAy + 8Aw) • A$ + 4Aw * hw

+ 8hAw - Ay + 8h2Ay * Ay] + 2c (58)

Substituting these approximate expressions for f1(w, Aw, AB, Ay)

and f2 (Aw, AS, Ay) into (56), we obtain
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MI(W, AW, A$, AY)

8l[8AO AO + Cl6hAy + 8~W Aa

exp 2 (h) 19.47 1 - Cos2 ( --1/6 AO

+ (2hy + Aw) * AO + hAu - Ay + h Ay * Ay

(59)

Employing the definition of the moments of the refractive index

structure constant C 2(h) given in (29), we may perform the integra-
n

tion with respect to h. Computing the integral and collecting

terms involving AB • A$ and AB yields

M'(u, Au, A$, Ay)

_ 1 2 16 A •A

[8cI1 V 0 19.47 3 o

+ [l6ci 1 AY+8cloAw-l9.47(- - s1 1
k2

exp -- _.

-19.47(1- 3Cos~e( "  -1/ "kWAP Ay)] -

~ 1 (8 Ay )) lJ i .A) +8i1A2Ay) c

(60)

To make this seemingly complicated expression more tractable,

we will make the following definitions:

I c 4CIyP ° - 9.73 ( -cos ) (W • W) PO (61)
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n2 8c u Ay + 4c u  - 9.73 ( 1 2 o W 1/6

(62)

(2 o 1 y +

I3 E cl(4ii 2 y Ay + 4pAw Ay + 2p ° Aw - + c o

-9.73 ( -( cos ( ) 1A) Ay + U 2Ay Ay).

(63)

We note that n2 is a vector while nI and n3 are scalars. With

these definitions (60) can be expressed very simply as

M' _, Aw, AB, Ay)a exp L~k~f 2 TI[a-Aa+n A/ + r n

(64)

Since this expression involves only quadratic and linear terms

in A$, we may perform the integration with respect to AB called for

in (34). Hence, with the approximations we have made, we may ob-

tain an approximate analytical expression for M O, Aw, Ay). This

was the prime motive for approximating the d(.) functions by qua-

dratic polynomials.

Completing the square in the exponent of (64) and performing

the integration with respect to AO, we derive the following approx-

imation of M0 (w, Au, Ay):

- 27 -
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M (w, Aw, Ay) = f f M'(w, Aw, A$, Ay) d2 A

2 2

M 21T_ { -k2( n - n 2/4l (5k T

The term (r3 - n2 * r12 /4%) can be evaluated by direct substitution

of (6l)-(63). The result is

(3 - 2" 2 /4l 1 ) = YI 2 - 10) Ay * y + Y2o + o0

(66)

where we have made the following definitions to maintain the sim-

plicity of the notation:

Yi - 4c - 9.73 1 - 2Cos a (* • (67)

( 1 2) \ - -/6.
Y2 - C + 2.43 i -- cos a (W W) . (68)

Finally, substituting (66) into (65),

o(, A , Ay) = 2 exp kY 1 ( 1o) A)?)

ky~0

exp •-k Y2 P Auj' exp < -k cuv4 . (69)

From (69) we see that M 0(, Aw, Ay) behaves as a Gaussian
0

function in both the Ay and Aw directions. We may take advantage

of this by defining

*I - 28-
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c 1 2 1 ,)

c 2 0J

Equation (69) becomes

pAY /Ay exp -

•exp {-k c 0 1.0 (70)

Equation (70) involves only a quadratic term in Ay and hence

the Fourier transform implied by (37) can be calculated in closed

form. The result is

Mo (w, Au, Au') = ff Mo(, Au, Ay) exp [jkAu' • Ay] d2Ay

AYc.. r
= 2v 2  c exp 'i-A. /A

k y i A/o~j

exp -k y cAw'- A'/4 exp vk c0 0 >
(71)

Defining

w' 2/kAy (72)
c C
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we have

2 c I2
M 0(w, tAw, Aw') 21 2r Y exp CA- A/wC

exp ;-Aw' A exp _k cu}.

(73)

Hence, we have found approximate analytical expressions for

M (w, Au, Ay) and M 0(, Aw, Aw').

We now consider the problem of selecting the coefficients c1

and co. These coefficients are selected so that

d(p) - clP • p + c (51)

when p w c . The coefficients c o and c, were calculated and com-

pared using a variety of methods. The details of these calcula-

tions are relegated to Appendix C. The following values for cl and

O were found to be reasonable choices:

3(k2o)lI/5
e 1 --- 3 (k2Ol/, (74)

C = 0. (75)

Substituting these values into our previous results, we obtain

MO ( , Au, Ay) -2 exp -Ay Ay/Ay exp <-Aw c)

YJ Po(76)
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and

2Mf _2w Aw/ 2'
w, Aw, A') 2exp - -Au * Au/Au

exp - 'A • Aw'/(Aw;}2 (77)

with

Y1 = 12 (k2-)l/5 9.73 1 - cos2 ( ) 1 /6 , (78)

(k = 3 + 2.43 I - cos2 ) .) (79)

Au = I

a= (80).

(81

A c 2 2

AY l(2- )' (81)

and

Aw' = 2 YI(1 2- Ul/ho " (82)

The validity of the approximations used to derive (76) and

(77) were tested by comparing the value of M (w, Au, Ay) predicted

by (76) with the value computed by numerical integration of (30).

-31-
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The two results were compared for a family of values of

w, Aw, and Ay. The details of the numerical analysis and the tech-

nical aspects of the numerical integration are included in section

6 and Appendix D of this report. However, initial numerical re-

sults showed that (76) closely approximated the value obtained

through numerical integration of (30) for large I11 (I-I > IO C).

As IlI was decreased (76) became an increasingly poor model for

M (w, Aw, Ay). The model completely broke down as 1Iw + w • Theo c

approximations used to derive (76) assumed that Ilu >> c; hence,

it is not surprising that the expression for M (w, Aw, Ay) ceases
0

to be accurate for IWI - W . We will analyze this problem in more

detail to find the lower bound on II for which our model is valid.

This lower bound will quantify the previous somewhat nebulous re-

quirement that IjI >> W •

We return to (34). M (w, Au, Ay) was found by integrating

M'(w, Aw, A$, Ay) with respect to A$ over the infinite A$ plane.

We should note here that the integration over the aperture plane is

actually limited by the size of the aperture. Thus, physically the

integral always converges. However, in deriving (35) we argued

that the effects of the finite apert ce could be separated from the

integration over A$ by sampling P' (u, Aw, , AB) at Aa = -Aw/2.

We now explore the consequences of this approximation and, in par-

ticular we determine the range of u for which the approximation is

reasonable. For the integral in (34) to exist, M'(w, Aw, Aa, Ay)

must vanish for sufficiently large JAMI. We shall explore

the behavior of M'(, Aw, AS, Ay) for very large Aa. From (30)
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it is apparent that for very large Aa, the terms d () d 4.),

d (.), and d (-) approximately cancel each other and we have
5 6

k k2 H C2

M'(w, Ai, Aa, Ay) exp - 2-- f (h) [d(w + Aw) + d(w - Aw)] dh',
S 0 n

tAai very large. (83)

We are not interested here in the Aw dependence so we set Aw = 0.

Substituting (23) into (83),

M'(W, &3, AO, Ay) - exp -r-2.92 kf Cn(h) dh 1
-

0

2 - 5/3).
= exp -2.92 k 11 ;. (84)

From (84) we observe that if I1W is not large enough, then

M(w, Aw, A , Ay) will not effectively vanish for large IARI and

the integration over the AB plane is not defined. We hasten to add

that (84) indicates that M'(w, Aw, AO, Ay) does not strictly vanish

for large IAI but rather approaches some constant value. We must

quantify what we mean by effectively vanishing. Numerical analysis

has shown good correlation between (76) and the numerical integra-

tion of (30) if Iwi is large enough to insure that the asymptotic

value predicted in (84) is on the order of 10- 6 or smaller. We can

now compute the lower bound on IWI subject to this condition. The

lower bound will be denoted by wcl, and is calculated from the

condition
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2 - 5/3 -6
exp -2.92 ki cl - 10

Solving for w V we find that

3" 3/5

l 13.83w. (85)
ci k2.92 k2 c (85

We have established w as a lower bound on IwI. Ourci

model for M 0(, Aw, Ay) is valid for IWI > Wcl" We can also inter-0

pret physically the behavior of M'(w, Aw, AB, Ay) in the

region w ( Ic i < w In section 4 we noted that for spatialc -2cl"w 2

frequencies satisfying lIJ + JAW) < W the entire aperture

appears to be spatially coherent. Furthermore, for spatial frequen-

cies satisfying lAwl < w and Iwi >> wc' the aperture is spatial-

ly coherent in regions the size of w (for source points separatedC

by Ay < Ayc). The region wc < (WI < Wcl is in the transition

zone between the regions of complete and partial coherence.

There is one remaining issue that must be resolved. In the

course of deriving (76) and (77), we assumed that lIu > lhAyI,

knowing that this assumption was suspect. The preliminary numeri-

cal analysis mentioned above has shown additional discrepancies

between (76) and the values calculated from numerical integration

of (30) for values of jul larger than cl" The region in which the

discrepancy was significant was generally confined to

W cl < M < 5w ci. For larger v.'ues of IwI, (76) was valid. We

should point out that the width of this troublesome region is
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highly dependent upon the model used for the refractive index

structure constant C 2(h). The width is largest for C 2(h) profiles
n n

with very weak turbulence at higher altitudes.

The discrepancy is in the Ay plane only. For values of w in

the troublesome region, M 0(, Aw, Ay) no longer appears to be a
0

Gaussian in Ay but rather the sum of a Gaussian and a constant.

The value of the constant decreases with increasing IwI. The

problem is due to the fact that under these conditions IwI does not

dominate IhAyl and the truncated binomial expansions used in the

derivation of (76) are not accurate.

To quantify the effects we have observed, we seek an alter-

native approximation to M'(w, Aw, Aa, Ay) that is valid for large

IhAyl. Unfortunately, we have not been successful in determining

an approximation that preserves integrability with respect to h.

Hence, we must sacrifice generality here and assume some model for

the C2 (h) profile. To expedite the integration over h, we will use
n

the simple double-impulse model for C 2(h) shown in Fig. 2.
n

C (h)

0

0 h

Fig. 2. The double impulse model for C 2(h).
n

-35-

S.i l l III l ir - - " . . . . . - " 'I ' d~ . . . .. . . -



!2

We model C 2(h) by~n

C2(h) = 6(h) + l6'(h - h1 ),

a > a (86)

The impulse at h 0 represents turbulence near the ground while

the impulse at h hl represents turbulence in the upper atmo-

sphere. The height hl of the second impulse is in general vari-

able, but in this report we will associate hl with the "tropopausal

bump" sometimes observed at a height of 10 4 m [8]. We require

that a > a1 to satisfy (12).

The double impulse model allows the trivial evaluation of the

integration with respect to h. Substituting the double impulse

model into (10) and integrating over h yields

M'(W, Au, A$, Ay) =

f 2 d (w + Aw) + d 2 ( - 1W
exp a d32A$ + 2A) + d4 (2A)

d 5 (2A + Aw - w) - d 6 (2A8 + Aw + w)

d7(w + Aw) + d 8 ( - AW) +2lY~

+ CL I +d 9 (2A8 + 2h 1 Ay + 2A) + d 1 0 (2A8 + 2h Ay)

d I l(2AB+2hAy Aw-U_) - d12 (2Aa+2-,iAy+A)+ J)

(87)
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I

Once again we will approximate each of the d(o) functions by qua-

dratics. However, here we are interested in large values of

h 1Ayl, so we will assume that 1hIAyI dominates the other terms in

the arguments of d (-) to d 2(-). Previously, we have shown that

d(p) - c 1 P + C 0 ') (51)

and

d ( -w + 6 ) 2 .9 2 ( W - 5 / 6 I + 5- 6 85 o s 2 e
c~) [ + :-:* k6 18IS /I L 3wo w~w(46)

Similarly,

d(l y +4~A )5/6 5h 16 - y 6 -6

d2hA + 6) 2.92 4 hy 1 + 2 2
L 12h Ay * Ay 4h Ay • 6y

(5 5 2 (8
T 1- 8 cos * . (88)

where 4 is the angle between Ay and 6. We are interested here in

the qualitative behavior of M' (w, Aw, AO, Ay) as lhAyl becomes

very large. To simplify the analysis, we will neglect the angular

dependence * and set cos 2  1 1. We approximate d3 () and d () by

(51), d1 (.), d2 (-), d(*), d6(0), d7(0), and d8C0) by (46),

and d9 .), d10(.), d11 (), and d 12 0) by (88). In Appendix C,

co is shown to be nearly zero. Making these substitutions in (87),

we obtain
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M'(w, Au, A6, Ay)

4c 6.49(w-w) la6 AS-A$+ 4c -6.49(W-)l6a AWA-\

0 0

exp k2  + 2c a+ 1.62(w )1/ a AW AW

+2.92(W-t) 1 / .a 1.62(4h~b~/ (W*C)W*A ax

(89)

This equation is quadratic in A6. Completing the square and inte-

grating over the Aa plane yields

M (w, AW, Ay)

2,,2 r /[ cl 21/1/o
090

exp {k 2 [2.92(uw) W 1 c - 1.62 (4h AY.Ay (_l/6Awa

where y' is given by:

2 /5 -/

Y' = 12 (k2 o) - 6.49 ( -1/6 (91)

The Ay dependence is no longer Gaussian, and we emphasize that this

approximation is valid only for very large 1h Ayl. In particular,

setting AW = 0 and taking the limit as 1hlAYI ,

= 2rr 2 53(im M 0u, 0, Ay) - -- 2 exp ,-2.92 k a 1 3I (92)0iaM k y' u .(2

Ih 1 Ayl. o
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Equation (76) predicts that M (w, 0, Ay) + 0 as lh 1 YI .

0However, (91) predicts that Mo ( , 0, Ay) -, g(W, ao , al, h) 0

as lhI Ayl + -. We also note that as IwI increases, the value of g

decreases. To bound the region where this effect is significant,

we propose to neglect g when IWI > Wc2" We define wc2 as

exp {-2.92 k2 a1  I215/3} exp {-2} (93)

Solving for wc2 yields

2 /5
wc2 (2. -2(94)/S

It is more convenient to express Wc2 as a multiple of wc" Using

(27), we obtain

= + _ c. (95)c2 al/ c

Equation (95) bounds the region where the noted phenomenon is sig-

nificant. The effect is significant for spatial frequencies w

such that w Iwi < w 2. We note that

Wi C 3 wc (96)

Wc2 *Kwc (97)

where K depends upon the ratio of surface-to-high-altitude turbu-
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lence. Some values of K are tabulated in Table 1.

Table 1. Representative values of K as a function of
the ratio a/a C

ao /a I1 K

100 15.9

10 4.2

8 3.7

4 2.3

2 1.5

We now make a key observation. If a /I 4 5.2 (i.e., if a101

is at least 20 percent of a ), then (c2 4 -cl and (76) is valid for

all IwI > w cl On the other hand, if o/a 1 > 5.2, then there will

be a nonvanishing region in which the Gaussian model in Ay must be

replaced by a Gaussian plus constant model. However, the width of

this region does not become significant until /a I > 10.

At this point it is useful to partition the w plane into four

regions:

a. IWI < W
C

b. c < cl

C. W cl <  IWI < W c2

b - 40 -
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d. - ( Ill
W c2< w

Under the assumptions lA wl < wc ,  2AB + Aw l < c and fAyl < Ayc ,

in region (a) the entire aperture appears coherent. Region (b) is

the transition zone from complete to partial coherence. In region

(c), M (u, Aw, Ay) is best modeled by the product of a Gaussian in
0

AW and a Gaussian plus constant in Ay. In region (d)

M (w, Au, Ay) may be modeled by the product of a Gaussian in Au0

and a Gaussian in Ay. We have shown that region (c) vanishes for

moderate to strong upper atmospheric turbulence.

Equations (89) and (90) are strictly valid only for the

double-impulse model of C2(h). However, the analysis should extendn

to more general C 2(h) profiles. The key result is contained in
n

(92). We conclude for the general case that if some appropriate

measure of the turbulence in the upper atmosphere is much less than

the corresponding measure of turbulence near the surface (i.e.,

less than 10 percent), then there will exist a nonvanishing region

(c) cl <  I uI < Wc2 where our models for Mo(w, Aw, Ay) and

M 0(, Au, Au') given by (76) and (77) will not be valid. For the
o2

double-impulse model of C 2(h), we can predict the size of the
n

region and the form of the deviation from (76) and (77). In the

more general case, the exact form of the deviation cannot be pre-

dicted by a closed form expression. We note that, physically, the

phenomenon we have described is the transition of the imaging

6 problem from the isoplanatic case to the nonisoplanatic case.

One reasonable technique for measuring the relative amounts
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of upper atmospheric and surface turbulence for an arbitrary sample

function of C 2(h) is to compute the moments ' I , and P2 of the
n2

sample function and then convert these values into an equivalent

double-impulse model. Equation (95) can then be applied to deter-

mine the approximate value of wc2 " For example, consider Huf-

2
nagel's simple model [9] for C2(h):

S1.5_h10 - 13

1.5 h - h < 20,000

C(n =  . (98)

0 h > 20,000

The moments of this profile can be easily computed:

= 1.64 • 1012

-9
= 3.00 • 10

-5
U2 = 3.00 • 10

An equivalent double-impulse profile would have parameters

= 1.34 • 10 - 1 2

-13
a, U 3.00 • 10 ,

4
h I = 10
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Computing wc2' we find that

w c2 2.8w c"

We conclude that region (c) vanishes for this profile and (76) and

(77) are valid approximations for all 1w1 > 3w .C

In general, region (c) is significant only for atmospheric

models with extremely weak high altitude turbulence. From the

above analysis of Hufnagel's simple model and other published pro-

files of C 2(h), it appears reasonable to conclude that models with
n

such extremely weak high altitude turbulence are not often encoun-

tered in practice.

Returning to the questions posed before embarking upon this

series of derivations, we find that simple analytical expressions

can be found that approximate M 0 G, Aw, Ay) and M (, Aw, Aw').

Our models for these two functions are given by (76) and (77). We

find that Cn(h) influences M 0(, Al, Ay) and M0 (w, Aw, Au') through

the zero, first, and second moments (Ij, ul, and u2). These are

the salient parameters of the refractive index structure constant,

and aside from condition (12) the general shape of the sample func-

tion is unimportant. We will discuss the impact of the smoothing

function M u(w, Au, Au') on the imaging statistics in section 8 of

this report.

6. Numerical Verification of the M. Model

In this section of the report, we will summarize the results
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of numerical analysis performed to test the validity of the closed

form expression for M.. The integration over A6 called for in (34)

was computed numerically and compared with the value predicted by

our model. Only one-dimensional problems were considered to keep

the numerical routines tractable. The details of the numerical

integration algorithm are discussed in Appendix D. The one-dimen-

sional equations for Mo(w, AW, Ay) are given in Appendix E.

The calculation of M (w, A, Ay) requires two integrations:

the first with respect to h, and the second with respect to A .

Initially, the numerical complexity of the integration routine was

simplified by presuming the double impulse model for C2 (h) (Fig.
n

2). This supposition makes the integration over h trivial.

Three double-impulse models were considered. They differ in

the ratio of upper-to-lower atmospheric turbulence (i. e.,

C 2 (hl 2 The model parameters are summarized in Table 2.

Table 2. Parameters of the three double-impulse models.

C2 (h) model a a
__ _ _ _ ao - i hi___

1% 10-12 10- 14  104

10% 10- 12 10- 13 104

25% 10- 12  2.5 * 10- 13 104

We refer to the three profiles as the I percent, 10 percent, and 25

percent models, where the percentage is the ratio of upper-to-lower

atmospheric turbulence ((ai/a0)- I00). In each case we set the

height of the second impulse, hl, at 10,000 meters. The various
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atmospheric cutoff frequencies (W , W ) for the three C2 (h)

profiles are tabulated in Table 3.

Table 3. Cutoff frequencies for the three double-impulse models.

2
C (h) Model Uci___ W 2

1% 0.050 0.150 0.797

10% 0.047 0.141 0.198

25% 0.044 0.132 0.116

All three models have comparable values of w and w1 . However,

the value of Wc2 varies considerably among the three models. This

is due to the wide variation in the relative amounts of upper-

atmospheric turbulence in the three models. The 1 percent model

implies extremely weak upper-atmospheric turbulence and hence the

value of Wc2 is large. The 10 and 25 percent models imply moderate

and moderate-to-strong upper-atmcspheric turbulence and have corre-

spondingly smaller values of w 2  Indeed, for the 25 percent

model, region c has vanished (section 5).

The values of M (N, Aw, Ay) computed from (E2) and by the
0

numerical integration of (30) were compared for many (350) combina-

tions of W, AW, Ay. The correlation was found to be very good,

with errors generally less than 10 percent until M (w, AW, Ay)0

approached zero.

Some typical results are plotted in Figs. 3-5. In each plot

cross sections in the Aw and the Ay directions are shown, with the
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other parameters fixed. The numerical integration data are plotted

in a dashed line, while the values predicted by (E2) are plotted in

a solid line.

Figures 3a,b-5a,b illustrate the roll-off of M (w, Au, AV)
0

-7
in the Aw direction with Ay 10 rads. Since Ay << AV there is

effectively no attenuation of M0 (, Au, Ay) due to the separation

Ay of the image points. Similarly, Figs. 3c,d-5c,d illustrate the

roll-off of M (W, Au, Ay) in the Ay direction with Aw = 10-
0

meters. Since Au << w , there is effectively no attenuation of

M 0(, Au, Ay) due to the difference in aperture spatial frequen-
0

cies Au. Figures 6a-6b are analogous to 5a and 5b except that a

much larger value of Ay was selected (Ay = 3 - 10-6) to illustrate

the cross section in Au when Ay is sufficiently large to contribute

to the attenuation. Also, Figs. 6c and 6d are analogous to 5c and

5d except for the selection of a larger value of

Au (Aw = 3 - 10-1), to illustrate the cross section in Ay when Au

is sufficiently large to contribute to the attenuation.

Figures 7a and 7b demonstrate the rapid degradation in the

model for M (w, Au, Ay) (E2) for w < wcl" From Table 3, for the 25o

percent profile, we2 = 0.116 meters. Figures 7a and 7b are plots

of the Aw and Ay cross section, with u = 0.100 meters. For this

value of w slightly less than Wcl the degradation in our model is

already apparent. Other numerical results indicate that the break-

down of the model is rapid and severe for W < Wcl"

There is strong motivation to further verify the model for

M (w, Aw, Ay) by generalizing the numerical comparisons made above
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to more general sample functions of C 2(h). Unfortunately, the
n

computational complexity of the "nested" integration implied in

(30) can rapidly become overwhelming even for reasonably "well-

behaved" profiles. Rather than tackle this more comprehensive

problem, we have tested a sampled version of Rufnagel's simple

model:

(i.s. lO-1 3

h h 4 20,000C2(h) = . (99)

0 h > 20,000

This profile was sampled at I km intervals resulting in the multi-

ple impulse model shown in Fig. 8 with

500 1.5 - 10-13
ci= J 15.=I dh,
O j h

(2i+1)500 -13
a. = J 1.5 -I0-dh 1 4 i 4 19,1 (2i-1)500 h

20,000 1.5 1013
a2 = 15 h - dh.

19,500

The corresponding Aw and Ay cross-sectional plots generated by the

numerical integration of (34) with this profile and the values

predicted by (El) are shown in Figs. 9a-9d. This model has a sig-

nificant level of upper-atmospheric turbulence, and so (El) was

used rather than (E2). Once again, the dashed line represents data

calculated by numerical integration while the solid line represents
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our model.

In conclusion, we have shown the closed form expression (E2)

for M (w, Aw, Ay) to be a reasonable approximation by comparing
0

(E2) to data obtained by numerical integration of (34). In partic-

ular, our numerical experiments verified the following phenomena:

1. The behavior of M 0(, Aw, Ay) in the Aw direction is
0

modeled well for all W > Wcl by a Gaussian curve.

2. The behavior of M (w, Aw, Ay) in the Ay direction is
0

modeled well for wcl < W < Wc2 by a Gaussian curve plus a

constant. For W > Wc2 ' the behavior of M4 (w, Au, Ay) may

be modeled by a Gaussian curve in Ay. The approximation

improves for increasing w.

3. For C2(h) profiles with significant upper-atmospheric

turbulence, wc2 
< Wcl and we may neglect the phenomenon

described in (2).

4. For W < W cl the model ceases to be valid. The breakdown

of the model in this region is rapid and severe.

7. Comparison with Fried

In this section of the report, we will compare some of the

implications of our model for M (w, Au, Ay) with similar conclu-0

sions made by Fried, et al. [10, 11]. We can associate the param-

eter Ay of the model with the size of the isoplanatic patch.

Fried has proposed the following expression for Ayc

Ay = 2.91 k2 H h5/ 3 C2(h) dh (00)
0 n I
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We have compared the isoplanatic patch sizes predicted by Fried

(100) and by our model (81) for the C 2(h) profiles discussed in the
n

previous section.

A {k2 Y 2 U2 -1/2 (81)yc 1 (V l{2 - V'I/oi 08

with

1k o /5 / )/

= 12 ) - 9.73 1- _ cos2 9 (W )1/6. (78)

Since our model includes some weak dependence on ulI and the angle

between w and Aw, we will set ll = 1 and e = 0 for the purpose of

comparison. The results are tabulated in Table 4.

Table 4. A comparison of the isoplanatic patch size
predicted by (81) and by Fried.

'2
C (h) Profile Eq. 81 Fried
-n

1% model Ayc = 2.06 105 Ay' = 5.27 1

10% model 6.74 10 1.32 105

25% model 4.47 • i0 6  7.64 10

Sampled Hufnagel model 3.98 •10- 6  7.03 10- 6

We find very reasonable correlation with differences on the order

of a factor of two.
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8. Effects on imaging Equations

We will now consider the effects of M (, Aw, Au') on the0

imaging statistics. We assume M (, Au, A ') to be of the form0

given in (77):

M (w, Aw, Au') - V exp I-A' • A'/(Aw') 2  (101)
0 C

where

2V -- exp {-Au •Au/(Au) 2} . (102)

loo

Substituting this expression for M 0 u, Au, Au') into (39), we

deduce the following expression for the Fourier transform of the

second-order statistics:

W(I  o2 4k 4 (21t)4 A! / Aw0l

W( W 41_ V F4 (, A) fo- u 0 A
(k) 2 2u 3- 2 ) Ku2

exp {-Au' • Aw'/(A W) 2} d2Au' (103)

In the following analysis we shall neglect the factor preceding the

integral in (103). This factor includes scaling constants and

gain-attenuation factors in both the w and Au planes. Our primary

interest here is in the distortion of the second-order statistics

in the Aw' plane. We define
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W'(wl W2)-f 7 0 -- , )

•exp I-Awl •w w' A 2} d 2Aw (104)

To provide more insight into the smoothing effects of

N(w, Aw, Aw'), we shall assume the image to be Gaussian. The

Fourier transform of a Gaussian is still a Gaussian so we may

assume that

0(w) = exp {-W • W/ . (105)

Substituting (105) into (104), we obtain

JO (w, rw/2 ( w2 '/2)
w'(wl, W2) =-If exp 2 exp <- 1 2

-00ft 
2 

1 1 ,

exp I-Aw' • A'I(Aw )2 } d 2Aw (106)

The integral may be computed by expanding the exponent and complet-

ing the square in Aw'. Neglecting an unimportant scale factor, the

integral is

f 2(A.')~ W,* wl
J(Wl' W2 ) exp -..... - exp

jQ2[(rn)2+ 2S1 ~

* exp - 2 (107)

We observe that the second and third exponential factors in (107)

- 51 -
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are just o(Wc) and 0(w2). We can express the integral J(ul, w2 ) in

terms of w and Aw by observing that

-(w1 -w 2 )" (W- .w2 ) 
+ (w1 

+ w 2) (w + w 2)1I " w1 + W2 " 2 =
-2

2" w + 2Aw * Aw. (108)

Substituting (108) into (107), we obtain

:r ,,I 2

A) A.c) w 2w w

2ww 1

exp (109)
1 2

Collecting terms in W,

[2-w 2Q 2 2Aw * A
J(w, At) = exp 2 ( wL", 2 + 202]) exp

(110)

From (110) it is apparent that the imaging process has not altered

the statistics in the Aw plane. However, the imaging process

broadens the statistcs in the w plane. Specifically, the width of

the function in the w plane is increased by the factor

1 + (Awl,)2/2S2.
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71

9. Summary and Conclusions

This report deals with the problem of astronomical imaging

through a turbulent atmosphere under conditions that force us to

abandon the usual assumption of isoplanicity. Integral equations

are developed which relate the object to the first and second mo-

ments of a series of short-exposure images. These equations in-

volve the structure function of the atmosphere, which is shown here

to be reasonably well approximated by a 5/3-law model for all

values of its argument.

A detailed analysis of the effects of nonisoplanatic imaging

potentially involves a considerable amount of numerical computa-

tion. Much of this computation can be avoided, and at the same

time our insight into the process can be enhanced by making certain

approximations to some key functions which describe the effects of

the atmosphere. Several such approximations are studied in this

report, and their validity is checked against results obtained by

numerically integrating the original functions. We have obtained

some useful models which are accurate under a wide range of reason-

able conditions and whose use greatly simplifies the analysis of

nonisoplanatic imaging.
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APPENDIX A

In this appendix we consider the derivation of the first- and

second-order statistics of a set of speckle images in greater

detail. The uncertainty in the images is due to variations in the

point-spread function s(x, y). To obtain expressions for the

first- and second-order statistics, it is necessary to compute

E{s(x, y)} and E{s(xl, YI) s(x2 ' Y2)}. From (5) we find:

Efs(x, y)} = IAI2 f f f aC8 + w)aC8) exp~je(S + w) - j6(6)]

2 2
exp[-jkw (x - y)] E{exp[*($ + w,y) + **(B,y)))d 6d w

(Al)

where

(, ") = x(, ") + JW(*, "). (A2)

We assume that X(', -) and *(', -) are uncorrelated, jointly Gaus-

sian random processes. Furthermore, wc assume that

E{x(., y)) = X CA3)

and

E((*, y)) = 0. (A4)
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For notational simplicity we define

g(a, W; y) 2 O + (, y) + *(B, y). (A5)

We note that g(O, w; y) is a Gaussian random process. To compute

E {exp[g]} we use the fact that for a Gaussian random variable x

2
with mean P and variance 

2

[ 1
Etexp[x]} = exp I + L a !. (A6)

2

Applying (A6), we find that

E{exp[i(O + w, y) + **(a, y)]} = exp {E(g(a, W; y)]
(A7)

+-IE[(g(O, W; y) - E(g(6, W; y)))211.

From (A2-A5) we infer that

Etg(B, w; y)} = 2P (A8)

and

Ef[g(B, W; y) - E(g(O, W; y))]21 = E{[X(B + t; y) + X(S, y)

+ + w; y) - jj(S, y) - 2X] 2 1. (A9)

Since X(', -) and *(, *) are uncorrelated and 0 = , we can elimi-
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nate the cross-product terms involving both X(-, ) and (., .).

Hence

Ej[g(B, w; y) - E(g(B, w; y)) 2 = E{Ex( + w, y) + X( , y)

- 2X]2} - E{[¢(B + w, y) - (B, y)] 2} (AlO)

For convenience, we introduce the notation

D(A, 6) = E{l (z + A, y + 6) - (z, y) 2} , (All)

D x(A, 6) E{I[X(z + A, y + 6) - X(z, y)]2} , (A12)

D (A, 6) = E{tl(z + A, y + 6) - 4(z, y)] 2} , (AI3)

B (A, 6) E{[X(z + A, y + O)X(z, y) - E{x(z + A, y + 6)}x

• E(X(z, y)} ,
(A14)

D 0(A, 6) E{[X(z + A, y + 6) - X(z, y)]14(z + A, y + 6)

- *(z, y))}.
(A15)

With this notation and some algebraic manipulation, (AIO) becomes

El[g(, w; y) - E(g($, w; y))121 -D (w, 0) - Dx (w, 0) + 42

(A16)

where
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2 E{[X(B, y) - ].2}. (A M7)

It has been shown [6, 12] that from conservation of energy consid-

2
erations, 2 =ox We also observe thatx

D(A, 6) = D (A, 6) + D (A, 6). (A18)
x

With these substitutions, we have

E{[g(a, W; y) - E(g(a, W; y))] 2} = -D(w, 0) - 4X. (A19)

Finally, from (A, A8, and A19),

E{exp[(a + w, y) + **(0, y)]) = exp - . D(w, 0) (A20)

Hence
1

E{s(x, y)) J AI2 ]-1 exp [- D(w, 0)] expf-jkw (x- y)]

2G 2

* J J a( + w) a() exp[jO(S + to) - jB(B)] d 2 d 2W.

CA21 )

To compute the second order statistics, we must develop an

expression for EZS(x 1 , Y) s(x 2 , y 2 )}. From (9),
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E{s xl' yl)s(x2' Y2) 1 = IA14 ff ffff If P(Bll ols 02, W2 )

SM(BI' W12 Ylv B2' VW2P Y2 ) d2al d2B2 exp[-jkwl " (Xl - Y l )

- jkw2  (x2 - y 2 )] d 2 W1 d 2W2  (9)

where

P( 1, WiB 2 , w2 2  a( 1 + W1 ) a(B1 ) a(62) a( 2 - W 2 )

explje(51 + 1- je(al) + j(06 2 ) - iS 2 - 2)]

(10)

and

M(, W' YI' B2S 22' 2 2 E{exp[(0 1 + WI, Yl) + **(BI' Y)

+ (B Y2 ) +F*(0 2 - 2 , Y2) ] }  (11)

The expectation in (11) can be computed by methods analogous to

those used to compute the expectation in A?). The calculations

are very tedious, however, and will not be included here. Rather,

we refer the reader to Fante [3) who argued that
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E{exp[4'(8 1 + WiY 1) + P(*l, Yl) + 0IB2) Y2) + **(a2 - W y2 )11

exp[- I D(wl, 0) - I D(w2, 0)

1 D(81 - 82 + WI + W2, Yl - Y -2 2 l - 2

1 DI/31~~2 2_ 2+Yl Y2 ) 1D/1_/2 + 2 2

+ "2 a + W + I D(a - 8 +y

+ 2Bx(81 - 82 + WI Yl - Y2 + 2B(8 1 - 82 + W 2) Yl - Y2 )

+ JD x(8 1 - 82 + wi yl - Y2 ) - JDx0(a 1 - 82 + (29 Yl - Y2 ) 1"

(A22)

Fante [3] has shown that the B and DX terms may be neglected. We

conclude that

M(Bi, w1  Y1 3 B2 2  Y2 ) 
= exp{- 4y[D( , O) + D (w2, O)

+ D(8 1 - 82 + WI +W W2 ) Yl - Y2 )

+ D(8 1 - 8 2A Yl - Y2 )

- D(O1 - 82 + Wi' Yl - Y2 )

- D(OI - a82 + W 2' Yl - Y2 )1l (A23)
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APPENDIX B

In this appendix we compare Kummer's function with the qua-

dratic and 5/3-power approximations. We recall that Kummer's func-

tion is the confluent hypergeometric series

2
az (a)(a + 1) a+(7

F(a, b, z) = 1 +-z + (b)(b + 1) 2 (17)
1 b Cb)Cb + 1) 2!+

We are particularly interested in the Kummer's function that ap-

pears in (16)

IFI 6- 1, 4

where Km = 5.91/10 and 1o is the inner scale size of the turbulence

(typically I mm).

The quadratic approximation of Kummer's function minus one is

2

The term "quadratic" approximation is derived from the p term.

Similarly, the 5/3-power approximation is given by

2 22 /
1FI 6-, l,-.-)- 1 -r(ll/6)

1 (K2/ P 5/3

m

(B2)
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Kummer's function was computed numerically by summing the

first one hundred terms of the series. This partial sum was ob-

served to converge over the range of p considered. The value of

Kummer's function is plotted in Fig. 10 along with the quadratic

and 5/3-power approximations. The quadratic approximation is ob-

served to diverge rapidly from Kummer's function for p > 8/Km .

However, the 5/3-power approximation appears to be a reasonable

approximation to Kummer's function for all p. Hence, we have mod-

eled 1F,(-5/6, 1, -(KIp
2 )/4) by (23) throughout this paper.

- -
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APPENDIX C

In this appendix we consider the problem of selecting the

coefficients c I and co in (51) so that

d(p) c 1 p • p + Co, IPI - Wc. (51)

For convenience we define

g(p) CIP I p + c (Ci)

We would like the approximating function g(p) to be optimal in some

sense. In particular, we have considered four criteria for select-

ing the coefficients cl and co:

1. Set

exp {-d(p)}Ip=W = exp (-g(p)}ip=
c c

and c. = 0.

2. Set

exp {-d(p)} IP= = exp {-g(p))IP=
C C

and

d exp -g(p)}]=
[ lexp {-d(p)}]Ip=W dp

c c
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3. Minimize the functional

J, exp )} dp - exp {-ag(p)} dp 2
00

where a is some positive constant (a > 0).

4. Minimize the functional

J= jc [d(p) - g(p)]2 dp

0

The constants c, and c o can easily be solved for in each

criteria listed above. The results are summarized in Table 5.

Table 5. Equations for co0 and c1 resulting from
each of the four criteria.

Criterion Equations for co and c1

1 c =0

cl = 3.15 (k2 P)

2 co = 0.33/(k
2 )

3 1/5
I  2.63 (k uo)

3 co =0

1/5= 3.093-(k 2 uo)

co =00822/(k2"o)

CI = 3.15 (k %i 0)
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From the table we observe the expressions for c0 and cI to be

reasonably consistent for the four criteria we have considered. We

have selected the following expressions for cI and co:

1/5
3 (k) (74)

c 0. (75)
4
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APPENDIX D

In this appendix we will describe in more detail the numeri-

cal integration routine used to integrate (34). The integrand of

(34) is M'(w, Au, AS, Ay). This function can be loosely regarded

as approximating a Gaussian surface with peak near t = -Aw/2. The

function rapidly approaches zero for AS such that

IAS + Au/21 > w . Hence, we should concentrate the numerical ef-C

fort in this region.

The numerical analysis was performed only for one-dimensional

problems. It was desirable to use an algorithm that would find the

peak described above and automatically concentrate the number of

function evaluations in the vicinity of the peak. Since lAwi < W
- C

and the width of M'(w, AW, AS, Ay) in the A6 direction is about

5 we truncated the integration over the A6 line to the inverval

[-I, +11. Since w c 0.01 to 0.1, these bounds on A are very

loose. To gu:arantee that the narrow peak of M'(w, Au, AS, Ay) will

not be missed by the routine, the interval [-1, +11 was divided

into twenty subintervals. An adaptive Romberg [131 integration

algorithm was applied to each subinterval and the results were

summed to yield the solution. In this manner the algorithm wastes

little time calculating function values of M'(w, Au, AS, Ay) at

values of Aa for which the function is small and not rapidly chang-

ing. The computational effort is concentrated near the peak of

M'(w, Aw, AS, Ay).

The routine was found to be robust but rather inefficient.

The emphasis here was placed on reliable results and not computa-

tional efficiency.
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APPENDIX E

In the one-dimensional or slit aperture case, all vectors are

colinear so cos2 6 - I, and the model for M (w, Aw, Ay) can be

simplified to:

(2 A? 21 Aw 2 IAw2 l El

Mo ( W. AW Ay) 2 w I - exp -y /Ay2 } jexp W (El)

where

12 k 2I2) - 6.49(u)- I /3

2 3 (k2') + 1.62(w

A c k 2 2 o

A =C 1 2
Ayc k2~ l1 -P2 / 1)

For the double impulse model, we can extend the one-dimen-

sional model (El) into region (c) (section 5) by modeling the Ay

dependence by the sum of a constant and a Gaussian. In this case,

it is readily shown that

lim M ( , O, Ay) - exp {-2.92 k 2c 1 1 5 / 3 }IhlIAY19. k 2Cla

If we assume that P U a 0 we obtain the model
0 0
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2 21
M W w$A)[X + (1 X) exp {-tv /tiy I

exp I-L A 1(E2)

where

X exp 1-2.92 k 2 a -Wi 5/3
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I. Introduction

The efforts reported here are a continuation of the Speckle Imaging

efforts previously reported [1]. Our goal was to develop a Speckle

Imaging algorithm for non-isoplanatic conditions. In particular, we

wanted a general framework based on linear algebra in which to examine

the many various alternatives.

The remainder of this report is divided into nine sections. Section

Two briefly reviews the non-isoplanatic speckle imaging problem under

simplified conditions. The Third Section develops both a linear

algebra representation of the discretized speckle imaging equations

and a corresponding graphic representation. The decomposition of

rectangular matrices is reviewed briefly in Section Four. Section

Five develops the relationship that allows two-dimensional images to

be treated by the linear algebraic methods being developed. Section

Six develops and examines algorithms for non-isoplanatic imaging based

on the factorization of the second order statistics. The joint

estimation of the object and the non-isoplanation characteristics are

discussed in Section Seven. Sections Eight and Nine discuss the

effects of the simplifying assumptions which made the linear algebraic

development tractable. Finally, a class of restoration algorithms for

non-isoplanatic Speckle Imaging is given in Section Ten.
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2. Statement of the Problem

Our aim in this work is to restore telescopic images, namely to find

the original image, the object, from images corrupted by the turbulent

atmosphere. The work is based on an analysis by Sherman [11. In

particular we wish to consider the removal of what is called the

non-isoplanatic effect through use of second order statistics namely

the average of many identical images (save atmospheric effects) of

some celestial object. The above paper provides the analyses and we

take as a starting point its equation 38 which we want to solve for

the original object. It behooves us here to try to give some

intuitive interpretation to this equation or rather to the

corresponding relationships of the Fourier transformed variables.
Thus, if we denote by a tilda (^') a Fourier transformed variable, the

corresponding equation which we call (38) is obtained from (38) by

eliminating the integrals with the inverse Fourier kernel. Thus (38)

is

In (38), 0 is the transform of the object, while I is the transform of

the image. To understand the mechanism let us substitute for the

expectation of (38)

namely the left hand side of (38) is approximated by the sample,

second order moment of Q images. Because the effect of the turbulence

could be considered as adding a random phase component in the Fourier

plane, (1) would generally represent summation of complex numbers with

an added random phase which would cause partial to full cancellation

except in the case where

T(w,) T ia:) ,for all q. (2)
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Then the product is always positive with the sum adding up because

holds for an original real (physical) image. We thus could say (proof

in [11 ) that the atmospheric effect on the expection of (1) for

)oL, and U-/ > Wc is to multiply what would have been otherwise

obtained by M,(HT',,6W), where Landz^W are given (as defined in [1]

) by:

2X(4

The d,ZJW plane (taking for illustration pusposes only one dimension

of each of U1 and ')) is rotated with respect to the (!,W 2 plane by

450 (and actually also reduced by a factor of -YT). We show M, in

Figure 1. M, is, except near the origin, a function mainly of 6' and

only weakly of ij. Thus, on the line J=-z M, is maximum and it

tapers off as we move away from this line. It can be approximated by

a Gaussian curve. We also have a factor, F, which measures overlap

of the aperture with four shifts. What it signifies is that the

Fourier plane is truncated by the aperture of the telescope and that

the overlap of it appears in the correlation. F, is given by

where a(,) is one inside the aperture and zero outside. We may note

that, because we are interested only in the region around '=-wwhere

MYO and that a(-)=a'V), (5) reduces to the two shift overlap

function for the region of interest.

M3 represents in (38) the non-isoplanatic effect. This is the effect

we want to remove, or more precisely, the effect despite which we want

to achieve reconstruction of the object from Fourier plane data. The

impluse response of the imaging system and atmosphere combined is, in

-3-



Figure 1: Region of interest of4j in W, Wspace-
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system theory terminology, shift variant under non-isoplanatic

conditions. The interpretation of (38) means that the effect of M3 is

that the value of the expected cross correlation at a point ( tJ,W' 2 )

is given apart from the MIF effect by smoothing along a segment of

4(-= constant with M3  as a weighting function. Figure 1 illustrates

this smoothing graphically. The weighting function, M3 , is

approximately a Gaussian function with a width of kJ.
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3. Algebraic Formulation of Discretized Equations

We rewrite (39) here as

(0),U), io ;) 2) 3 / C) (6)

where the (CJnotation has been dropped and J is taken only in the

range of support of M, and F Y Let us assume for awhile that ,/ and

W.- are one dimensional (rather than two). Let us assume also that we

digitize (6) on a uniform grid. Then we have a discrete version of

(6),

.(rn13m ) ()(2- (7)~A~t

O(m) is a (column) vector and thus we can consider 0(m-k) to be

another vector generated from the first by a shift of elements. Thus

all possible values of 0(m-k) for L<m<H, -R<k<R could be represented

by a Toeplitz matrix whose elements are O(m-k).

I= )

where the left subscript T means that the Toeplitz matrix T0 is

obtained from the vector 0 by appropriately shifting the elements.

Because M3 is similar to the Gaussian function, we select R according

to the precision required. Similarly we can define110 as the
generation of a Hunkel matrix whose elements are 0(m+k) from the

vector 0. Note that while the elements of the Toeplitz matrix ar the

same as diagonals, they are the same on antidiagonals in Hunkel
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matrices. Thus (7) can be written as

01 TrC) l T 0 0 H0  (9)

where superscript T indicates the transpose and M is a diagonal square

matrix whose elements are

AI~ 56-j).(10)

Figure 2 graphically represents (9). Any element ofcJ, located say

at m,n is obtained by a scalar or inner product of row m from .0 times

column n of 0 T (or row n ofN0), weighted by the diagonal elements of

M.

We should also note that a Hunkel matrix could be obtained from a

Toeplitz matrix and visa versa by multiplication by an "antidiagonal"

unit matrix

7r 0of
so that (9) would become

0 /V T(12)
-T T

We note also that in (9) or (12), M could be absorbed into T0 and

being diagonal M multiplies each column of F0 by a constant M It

of course could be also absorbed into the right as M=MT, or we could

split M, say symmetrically, into M=T1If . Also M commutes with J to

produce for example,
-T

L j(M /)~7  M.j QJA) t ITO (13)
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Figure 2. Illustrating equation 9
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4. Decomposition of Rectangular Matrices

We wish first to review and present in a form to be used later some

results from linear algebra. Consider any pxq rectangular matrix

A=[a(i,j)] of rank r. This implies that we can find r independent

columns of this matrix and express all other columns as linear

combinations of these columns. Thus we can writeAT,L =L J (14)

where AR is the pxr matrix generated by the above columns and AL is a

qxr matrix whose columns are the coefficient of the linear combination

that generate the columns of A. We could alternatively start by

saying that any row of A is expressed as a linear combination of r

rows. Thus, it is said that AR and AL are respectively composed of

vectors which span and are a basis of the columns space of A and 
AT

This decomposition is called "full ran:. decomposition or "full rank

factorization". The name implies the full column rank of Ag and row

rank of A[. This is shown graphically in Figure 3. We should note

that the decomposition is not unique, because all possible Am span the

same column space of A and all A, span the row same space of A. One

AA is related to another by a non-singular transformation, and we

actually can also write a more general decomposition

C$ T (15)

where C is a non-singular rxr matrix (Figure 3c). We may note that we

could use a decomposition with a number of columns in BR and rows in

BLthat is larger than the rank. This is more general, but we will

lose some properties.

While it may seem trivial, it is worthwhile to examine Figure 3 in

detail. Considering Figure 3b, we see that each element ofJ, say

J,, is obtained by a scalar or inner product of the corresponding row
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Figure 3. Illustration of matrix decomposition.



T

from AA and of the corresponding column of AL. Looking at Figure 3C,

we see that we can absorb C into BR. This generates a new B in which

each column is a linear combination of those of the old B1 . One could
T

of course absorb it in BL and then the operation would be on the rows.

C could also be split into a product C C and then C, would operate on
Tthe columns of B. and C., on rows of B, In the particularly useful

case when C is diagonal, what happens is that each column of Ais

multiplied by the corresponding diagonal element which is a constant.

We should also note that the matrix A can be really only a submatrix

of some larger matrix that has been partitioned. If we consider

Figure 4 or the corresponding equations

1 ,- 9(16)

We note that we cannot take all i or j but only some of them. Each
T

element in - is obtained from a row B. and a column of B,. Thus an

independent subset of equations can be obtained if we select a set of
rows and columns from B B T as shown in Figure 4. In fact the

selected rows or columns need not be contiguous. One should be

careful to note that this selection may change the nature of the

equations represented by the matrix product. For example, BA and

BL may contain the same variable which would make the equations

quadratic. Proper selection may change this nature. This possibility

of selection is important in particular cases both because it allows

reduction in the number of equations (at the cost of redundancy or

noise reduction) and change in nature of relationship.

A particular form of full rank decomposition that has become very

popular in recent literature is the singular value decomposition

(SYD). The SVD is a full rank decomposition with two additional

requirements. First, the diagonal matrix C in (15) of positive

elements (usally called _) is arranged by magnitude with the largest

one first. Second, B and BL (usually called U and V respectively)
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are composed of orthogonal vectors of unit length. The SVD is usually

written with the notation

1 r Tr
_V or (17)

if A is square and Hermitian then U is the conjugate of V.

In some presentations in the literature U and V are taken to be square

rather than of a number of columns equal to r, the rank of A. This is

done to be able to make U,V conform to the definitions of orthogonal

matrices. Because the ul, v, for i such that 67,r =0 do not affect A,

the two definitions coincide. Because the SVD is a full rank

decomposition (factorization), we may conclude that one can represent

that matrix A by either the SVD representation or the full rank

decomposition of (15) and that the transformation from U to B, (or V

to BL) is a nonsingular transformation which is recoverable if we know

an r row section of U and B..
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5.U Representation of Two-Dimensional Data

We previously developed the analysis on the simplified assumption that

our object and image were one dimensional and this led us to a matrix

representation for the basic non-isoplanatic relation for second order

statistics. Because our objects are two dimensional, their Fourier

transforms are also two dimensional. We can write the sampled version

as a function of two discrete variables, n,m or

0 - 0(' r r ) )(19)

and two dimensional version of (7), the basic equation, is

, / "'(20)

and our functions now have four variables rather than two.

Because, we are used to representations of functions of two variables

and they are easier to represent in the plane (paper) graphically, we

would like to map the four dimensional Euclidian space into a two

dimensional one. This can be done in several ways. We start with the

way we look at the original problem, Figures 5a and 5b. We have a 2-d

plane, and each point in it is the origin of a perpendicular 2-d

plane, but the axes can be selected in several ways. We deal not with

continuous variables but with a finite set of discrete variables.

These can be mapped from a plane to a line by taking a column at a

time and cascading them. In order to be consistent with our previous

representations, we will use the mapping of J illustrated in Figure

6. The index space will map into a column by taking a concatenation

of vectors running over n for fixed m. This mapping is the common

raster scan and keeps (20) in its familiar form,

T (21)
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eSM,+2 0 Cok s~itekf

(a) m n, m., nnrappings -axis of and one axis of TOor 0- see(c).

k

(b) k,l mapping -axis of M3 and of T
O or H0 .

HO

(c) combined.

Figure 6. Mappings to lower dimension.
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where now the matrices , , H0 become block matrices. Thus, TO

could now be considered as block-block Toeplitz. This means that in

the m,k block location of matrix T we have a Toeplitz block with
indices n,l and the block themselves have a Toeplitz structure.

Similarly, ,O is block-block Hunkel and Jhas a corresponding block

sturcture. M is now again a diagonal matrix, but the values of the

elements are M(-k+l 2 ) and do not have the bell shape any more.

Figure 7 shows the mapping for the 'O matrix for an arbitrary vicinity

of k,l; 1 ranging from -1 to + 1 (assuming R=1). This makes the

width of the T0 matrix 9=N where N=(2R+1). If the m ,n array has

dimensions* uxv, then T O is a block matrix of uxN blocks and each

block is vxN. The total matrix dimension is uvxN

*Please note the different meaning of the word dimension in a matrix

and in a space. The appropriate meaning will be clear from context.
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6. Algorithms for Factorization

We will introduce here an algorithm for finding 0 given 4 and M3 . We

show in Sectiun 7 that if M3 is not known it can be found as part of

the procedure. For this purpose let us consider first the Newton

Raphson procedure for finding a square root or finding X given

2
X = A (22)

Let X be the Ith iterate obtained using this Newton Raphson formula

A'h,~A~~(<AX 1 )(23)

or

b + j x(24)

We purposely separated (23) and (24). While (24) seems more compact,

it may be advantageous numerically to use (23).

These formulas are known to converge very strongly- namely

quadratically. A simple substitution shows that

'X -, = - (25)

So if we have a fair approximation, say .25X, then after the next

iteration we have § - 3%X.

Analogously we start with

Ij - T 0 0 (26)

We take the left inverse of 0 and obtainT

T 07
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where again J is the "antidiagonal unit" matrix.

We now assume that Ti is the Ith approximation to TO and define

T 7

0, (28)

We also define TJO as the (n+p-1) vector obtained from the nxp matrix

70 by averaging all the elements on the diagonals. T may not be

exactly Toeplitz, or as is the case here the columns may be multiplied

by the factor M. We define-1 0 similarly. Now we let

(29)

where the sum is only over the terms in' corresponding to the

elements averaged. This is the complete range of k for diagonals

which are not foreshortened.

Now let

,/\ / M)__i , - T (3U)

then

7 - T -' (3 1)

or

T JI-, 1 (32)

the same comments about numerical advantage apply to (31) and (32) as

those of (23) or (24). Straight application of this algorithm assumes

J (or rather the selected rows and columns ofj ) is square.

A variant of this procedure which was used in [1] is to normalize
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71

(multiply by constant) 0/,/ in such a way that the (quadratic) norm

implied from (26) will hold. This converges for the rank one case in

one iteration. Consider a matrix C of rank one

CT (33)

We let

T T

and

(35)

where the scaling constant c. is defined by

C6  Z - ' ) (36)

and the matrix dot product is defined by

Then c. can be reduced to

CO (x ) ) (38)

Substituting into (35) shows that (34) and (35) converge in one

iteration, when C is rank one, -/
X ( TQ 7 k

IV x~ x~jKX~)(39)

If there is more than one non-zero eigenvalue, then convergence will

not happen in one step. The error after the Ith iteration decreases

as the ratio of the second largest eigenvalue to the largest
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eigenvalue raised to the Ith power. This method is an adaptation of

the power method for computing eigenvectors.
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7. Joint Estimation of M3

We assumed that M3 is given to a first approximation by

S-/(40)

Actually it turns out that both 4'u and ctare weak functions of 6-4, as

shown in Figure 8. As seen from the figure, we can divide the

behavior of M3 into three regions. In region I, low frequencies, it

is essentially an impulse. Region II is a transition region in which

it widens to a guassian funcion and becomes fairly independent of W in
region II. Because the low frequency behavior of 0 is known, our

main interest is in region III and we have modelled the behavior of

M3 in another portion of this effort.

If we do not know M3, we can find it as part of our computation to

find 0. As we have seen, we obtain a Toeplitz matrix and each column

of it is multipled by a sampled value of M3 which we called Mjx. Thus

at one of the computational stages we may obtain (noting M__J)=M)

the matrix

ti Oro-) MC i,, i -3 (41)

M ,,O rn ' 1 4 ( Or)- M11. 0r 4

T~t

e M1 e

, 1, 1 0  O Om - -

Jill ~PI 1~o k-In 1 Orn /1/
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I I ~A

Figure 8. Behavior of 143.
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Because, apart from M/ , elements on each diagonal are the same, it

seems that we can take any diagonal and find Mizup to a constant.

(M is a positive number). However, the entries may be corrupteu by

noise or numerical inaccuracy.

If we look at (41), we see that not only elements on the diagonals

differ only by their M 4 multiplier but also the encircled elements as

a group. At first glance it would seem advantagous to sum all the

elements in encircled groups and normalize the results so that MN, =1.

The O are however complex numbers and their sum may cancel. It would

behoove us thus to take the sum of the magnitudes in our example or to

evaluate

V- (42)

and

(43)

The number of elements in the summation (a+b+1) is chosen according to

considerations numerical of accuracy, amount of computation, and

signal-to-noise ratio.
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B. Effects of Truncating of M3

We have stated that we take R such that M O#0. Because M3 only goes

to zero assymptotically, though very strongly, we would like to find

the effect of truncating the "tails" of M3. A smaller R is desirable,

because it reduces the number of equations (proportional to R ) and

improves the condition nuwjer.

Figure 9 illustrates the product

C A/iS (44)

where A is mxq, diagonal M is qxq, and B is nxq. We want to find the

change in the elements of C if q is taken to be one less. We denote

by

L 2 (45)

the change in the elements of C generated by truncating the qth

element of M3. The term in brackets is a rank one matrix or dyadic.

Because A,B are respectively Toeplitz and Hunkel matrices, all their

columns have about the same norm. Thus, the individuals terms are

proportonal to Mi and the effect of truncation of the sum at a

certain q is proportional to the "area" under the tails of M which is

approximately Gaussian and tapers off rapidly.
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Figure 9. Illustrating the effect of truncation of M3.
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9. Effects of the MF. Schur Proauct

As indicated before M2 F, multiply each term of -. This is an

operation known algebraically as "Schur Product" and which does not

work well together with the ordinary matrix multiplication. One could

divide Jz by M1 F,, but this accentuates the noise and is not

desirable. The basic non-isoplanatic equation (38) can be written as

o r 
( ' / & 

)( 
7

One way to overcome this difficulty is to consider only one row at a

time of M F. Then we could take that one row of I F. and write it as

a diagonal matrix for one, particular W,. This is depicted in Figure

10 which is similar to our previous representations, with MI added and

denoting the multiplication of each column of .O by the corresponding

(diagonal) element of MI ,

7 2 T/j T7')
T0/W 1 (48)

We have absorbed FY into M, and we can solve for one row of T0,

0C 2j 0 (49)

where -R indicates a right inverse.

Thus we can find one row of O at a time. Because "r0 is a Toeplitz

matrix, we do not need all rows to find the vector 0 but in order to

get more redundancy we would compute one row out of about every wj/2

rows. The amount of work is large, because we compute every right

inverse anew. Although this difficulty could be resolved if M4 were

separable, M, is not separable.
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Figure 10. Representation of equation 48.
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10. Restoration Algorithm

We are now ready to write a restoration algorithm for the

non-isoplanatic case in simple algebraic notation. The Speckle

Imaging equations for non-isoplanatic conditions can be written as

functions of two dimensional variables td,, and t4,

A

Again, M, and F, have been combined into M.A. We will assume that the

sample second-order statistics denoted by J , ) have been corected

for the bias terms introduced by measurement noise.

A

Fortunately, J(ww does not have to be computed for all a7, and 4).

The second-order statistics have non-negligible values and hence

information about the object only forji iawI$. Thus, we only

crosscorrelate those portions of the image transforms which are

mutually coherent. The size of the mutually coherent area is

described by the atmospheric cutoff frequency,'t . The

non-isoplanatic effect introduces a smoothing of the second-order

statistics as indicated by the summation over t/in (50). This allows

a further reduction in the number of W, , points at which the

second-order statistics must be computed because the redundant values

do not contribute substantially to the solution.

As indicated previously, we can solve for the object by solving

subsets of equations from the set of equations given by (50). For

example, select all equations involving a fixed 60, and write them as a

set of "linear" equations;

for U1 fixed and
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Because the isoplanatic patch is greater than the spread response,

W is less than We. This results in (51) having more equations than

unknowns because there are more values of f __ / than i' . This

formulation is illustrated in Figure 10 as the selection of a

particular row of T and f. The remaining question of the linear
independence of the equations was previously addressed in [I].

Because the subset of equations is based on a fix _ , they are

independent. The equations can be written in vector form asI- JW ;IJ W1(52
(52)

or

The solution can be written as

OC, T4) (55)

However, the inverse would not be computed because it depends on

-?, and the current estimate and can be used only once. Directly

solving (54) using a linear equation solution method would be more

computationally efficient. This yields an estimate of the object over

a region of radius W. about W .

To solve for the object over the entire Fourier transform domain, we

choose a sequence of a.'s at which we solve (54). The sequence of

aL's should start at the origin and "spiral" out to the diffraction
limit. The separations between the _,'s chosen should be less than

twice A)c to allow the regions of the estimates to overlap and cover

the entire frequency domain, and should be greater than &,j to avoid
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processing redundant information.

The steps of this restoration algorithm for non-isoplanatic Speckle

Imaging can be summarized as follows:

I. Initialize the solution near W,=O using the first-order

statistics (average image transform).

2. Compute the coefficients of the linearized equations, C(W),

from the current estimate and the models for atmospheric

disturbance and measurement noise.

3. Crosscorrelate the second-order statistics with C(w,1) and

solve (54) for the object.

4. Select a new u and repeat starting at step 2 until the

diffraction limit is reached.

5. Reset to zero and repeat starting at step 2 until a

convergence criterion is satisfied or for a predetermined

number of iterations.
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